AD-A259 68
LT ° ®

0

AFIT/GSS/LSY/2D-4

DTIC
ELECTE
s JAN 2 8 1993
C

SOFTWARE SUPPORT
MEASUREMENT AND ESTIMATING
FOR ORACLE DATABASE APPLICATIONS
USING MARK 11 FUNCTION POINTS

THESIS

Steven D. Radnov, Captain, USAF

AFIT/GSSA.SY/92D-4

93-01401

Approved for public release; distribution unlimited

98 1 26 018

The views expressed in this thesis are those of the authors

and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.

DTIC QUALITY INSPECTED 8

;Acuum&ullor

| w11s emasd i
© DO RAW O !
Unanacuneed 0

]
|
| Justifieatien ———
‘ X
'
[

By
Distrisutien/

Availability Codes
i~ |Avail amd/or
Dist | Special

o

AFIT/GSS/LSY/92D-4

SOFTWARE SUPPORT
MEASUREMENT AND ESTIMATING
POR ORACLE DATABASE APPLICATIONS

USING MARK II FUNCTION POINTS
THESIS
Presented to the Faculty of the School of Systems and Logistics
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Software Systems Management

Steven D. Radnov, BA Computer Science

Captain, USAF

December 1992

Approved for public release; distribution unlimited

Preface

This thesis measures levels of Oracle database software support in terms of Mark II function points
mapped to Oracle software components, and measures the effort and schedule response of four programming
teams. The mapping allowed programmers to easily and unambiguously determine the size of the project
before the coding began. A significant relationship was discovered between a given level of support
and the programmers’ effort response measured in work-hours as well as schedule response measured in
calendar-weeks.

My education and insights gained from on-the-job experience in a database support organization
inspired and sustained my obsession to see this through to fulfillment. My friends’ and former colleagues’
interest in my thesis has been a great source of encouragement. Captain Kathy Auzenne, Chief of the
Systems Support Division sponsored this research and made it possible to collect enough real world data
to put the theory to the test. Without observations from the field, most of the ideas would not have
been tested. Thanks Kathy! Susan Zindorfs valuable insights into local software support activities and
a 'reality-check’ of the mapping of Oracle components to Mark II function points were pivotal. I wish
she could have participated in the eventual data collection. Doug Burkholder and Beth Davis provided
omniscient and omnipotent assistance as only DBAs can. Of course, I cannot forget Jeff Lindsey, Larry
Frazier, and Kathleen Hale for their cooperation. Professor Dan Reynolds introduced me to a universe of
possibilities in probability and statistics, as well as encouraged me in my endeavors. Thanks Dan! Finally,
I would like to thank my advisor, Dr. Rich Murphy (a man of infinite patience).

The support and understanding of my family gave me the energy to persevere. My wife Carrie is
a saint of course, for sacrificing, for listening, and for giving so much and asking so little. Our youngest
daughter Alaina lights up every day with her endless smiles while her sister Natasha adds her boundless
enthusiasm. They both look up to their big sister Rebecca, who charms every one she meets and makes
my problems seem so small in comparison 0 her battle against Cystic Fibrosis. Rebecca is an inspiration
to all ... especially to me.

Steven D. Radnov

Preface Cheetc st ae s seseesessenncane ceressoss e ii
Listof Figuresc0iiiienetoinoenasanescoonanaseanensnses viidi
Listof Tablesiiiiiiiiiiniiunneaseenceosacsconneooaness ix
Abstract Ceaeees e ans S e e s s aee s et X
L INrOduCHOnottt i ittt ennnnosnassoesononnsssescaasansnanees 1

Ll Backgroundcoeeeeuenennns ettt 1

L2, SpecificProblemcc0itiiitrneitttaannanaans 2

1.3. Research Objective and Investigative Questions.ccvvv vt 2

I4. ScopcandLimitations00t enaaeasns . 3

15. Definitions for MEBSUTEMENL ¢t v vt v vt v v et enoranoaanas 3

16. Definitions for ESHMAHNE . . . o oo v oo v eenveereenennnnonnn. 4

L7. Thesis Organization f e e et 4

IL Littratufe REVIEWt ittt v s e snnrenncoosssacnsannsanceeens 6
ILL. Overview viiiiiinnenncans C e e eaee e 6

I12. Lines of Code (LOCs) et e ettt e 6

I13. Albrecht’s FunctionPoints e e tee e fee et 9

I14. Symons’ Mark II Function Points ettt ettt 14

ILS5. Jones' Feature Points et C et et 16

I1.6. Halstead’s SOftware SCIenCe oo v it viveeenennsansans 17

I1.7. McCabe’s Cyclomatic Complexity ettt 18

I18. Other Sizing Methods Ceieer it ettt et 18

I1.9. Estimating Effort and Schedule C et teesie e 19

I10. Summaryc0000cnvesess e cee st s nneens 20

Table of Contents Page

IIL Measurement MethOdOIOBY v ¢t vttt iir i it sneeeoossenoeennnsonaes 21
OLI OVerview it ittt ittt rvsonenasenscsnsansecnans 21
IIL2. Software Unitof Measure et eer et 21
IIL3. Oracle Software Measurement cco e envnnconnnns 22
IIL4. Effort and Schedule Measurementccc0eeeeneosans 4
IIL5. Data Collection Program Ceees s et 24
IILG. SUMMATYt ittt vttt ieeeeeennnscoenoeeennnessnans 26

IV. Estimating Methodology e et e e 27
IV Overview ottt i ittt ittt i ittt 27
IV2 POPUIBHONo vvviiteninne e ennneseenennnnneness 27
IV3. Descriptive Analysis00ivevennnnrececcncnnans 28
IVA. Regression ADAIYSIS o v ot vnecnnesennneennanennnees 28
IVS. Indicator Variablesciiveetitcnnnncns ceee 29
IVG. Effort Modelttt iveonennncinnnans i 9
IV.7. Schedule Model e e e e s et et ettt 29
IVS. FRatio e eseeere e se et enenacenean 30
IVY. Parameters i ittt etioensonnsncannnonnans 30

IV.10. Model SPECIICAtON . . . o o v oo v vv et eneen e eecnnnnnnns 30
IVIL Distribution Of €ITOr 661MSo v v v e ennneearonnans 31
IVI2, Outhiersot ittt ittt it iennnnassnoeenennsnas)|
IV.13. Influential Outlierscc0itiiieveenencsaacnnsas 32
TV.14, COMMEAMIEY o o v v v o v ee e enenn e eeeneenneeeneasennns 32
IV.1S. Prediction Intervals00iteeertncnnnnnnnans 33
IV.16. Summary ettt et e ettt e ceee 34

.. 35
Vi Descriptivecc000.. Cesrae et ie e .. 35
V2. REGIESSION . . . oot vttt vennsonensasossssaseacnnasnnns 35
V3. EffortModeliiiviintenisnnncossnnsenancenns 36

V3.1, Descriptive Statistics ccvveeteneerorens 36
V32 Indicator Variablesttty 36
V.33. Coefficient of Determination C ettt 37
V34 FRAOivvvetiensontocsenscnasnsensas 37
V35 Parameter Testso0iieentnnnnroncnnneas 37
V.3.6. Model Specificationovoevtevrteanrnnennnnn 38
V3.7. Distributionof the Eror Terms civvveeenanns 38
V38 Outhers vt vvvveenrvocenssnaennsonanans 38
V39. Influential Outliers it eivieennernan 38
V3.10. Collinearityo cv v vt inneensnnsoasnsasanas K
V3.1 PredictionIntervalscccvtitincrnnenans 39
V.3.12. Closing . et e e et et 39
V4. Schedule Model Omeo vtteinrtnennncoannnnens .. 40
V4.l. Descriptive Statisticsottt i renerenn 40
VA42. Indicator Variables0itinieiennanan 40
VA4.3. Coefficientof Determinationcvcvevveveens 41
V.44. F-Ratio . . et e Ceceteeee e 41
VA4S Parameter Tests Ceeesaesaeas 41
V.4.6. Model Specification et e ettt 42
V4.7. Distributionof the Emor Terms 42
VAS. Outhierscittenvneesnceccansacnsens 42
VA49. Infloential Outliersottt neennas 43
VA4.10. Collinesrityccovvevineneecnnnnnosans .. 43
VA4.11. Prediction Intervals et e e 43
V4.12. Closing et te e ettt 44

V.S. Schedule Model 2. S et e et e s et e ettt 4“4
V.5.1. Descriptive Statistics uviee it 44 .

V52, Indicator Variablesl 44
V.5.3. Coefficientof Determinationco0vvuvnn. 45 ’

V5S4 FRAIOitiiirenenerssnnssonnsscnnsns 45

VSS. Parameter TestSo oo evivesnnonsoensnnnsonns 45

V.5.6. Model SPECification vvt ittt 46

V.5.7. Distributionof the Emor Termsccovvueenens 46

VS8 Outlierso iiiiin ittt enercenannnnens 46

VS59. Influential Outlierscciiiiunnns 47

V5.10. Collinearitycc0itiiinrinneeencnannnsns 47

VS.11. PredictionIntervalsc. 0., 47

V512 Closingo v iieite ittt noenassonncsssans 47

V6. SUMMALYttt etnnnnnnstsesaesaannnnnas 48

VEL Conclusionc.c0i it iineiinenssnneeessnannsoaneneenens 49

VLI. Measurement Resullsttt iiinnnennsasnaasss 49

VLLL SIZRgt ittt enoenconncaaanaas 49

VI12. Effortand Schedulec00eerevnnnnnns 49

VI2. EstimatingResults00ttt iennccannaennn 49
Vi21 Effort ce ettt Ch e st eae e 49 .

VI22. Schedule Ceeenen et 50
VI3. Recommendations ettt teeeaeean 50 *

VI31. Measurementviveeteenocnnnenonnansas 50

VI32 Estimatingcct0tieiniensranensonns 53

Appendix A:

Appendix C:

Appendix D:

Appendix E:

Appendix F:

VL4, SORtware QUalityceceueeeennnecnnannannnns 56
Observationsc.c0000 et e s eea et 58
Al Frequency PIotS . . .o v oo v veeenennveennonnneoneeneennas 59
A2 EffortScatter Plotttt etnrtntnccecensnanas 60
A3. Schedule Scatter PIotttt ennnrananoans 61
EffortModelt iiiiiriienneroronsansnnaconnos 62
B.l. ANOVAsnd Parameter ESMALES v v« e oo oo vnsnascnennaas 62
B.2. MOGE! SPECIICAION « + ¢« « v oot eeeeeeeeneenennenennnnns 63
B.3. Influential Outliers and Collinearitycovvevenn.. 64
B4, PredicionIngervals00ttt oenctaccnceas 65

Schedule MOdEI OnE v i ittt ettt ittt e et 86
Cl. ANOVAand Parameter Estimates oo v et ievncnennns 66
C2. Model Specification v vv vttt ittt i e et 67
C.3. Influential Outliers and Collinearity 68
C4. PredictionIntervalsc000ivinecnnccnsanssensas 69
Schedule MOdEl TWO ittt ittt st nnnoneneaneenans 70
D.l. ANOVAandParameterEstimates000uvenn 70
D2. Model Specification v vttt ittt c e 71
D.3. Influential Outliers and Collinearityc v 72
D4. PredictionIntervals00t ittt iennnnnneas 73
FOREP . ..ottt st e e e e e e e et e eee e e e eeenans 74
ElL FP2RE ittt ttetisenssnaanasocessnssasansna 74
E2 REDUCECOM0tttiireerenarennanenssnnsennas 74
SQL*Forms Inputs, Entities, Outputs v ot e v ettt enenennnns 75
Data Dictionary Programt e vt e neroneceesscsoncnncans 76
Data Collection PrOGIaM « v . oo veevenneennneenenrnennnn. 100
.. 134
.......... PP K .3

10.

12.

13.

List of Figures Page

Productivity PRFadOX ittt i ittt et 9
Behren'sResearchc.cititiiitiinerennocnensacancnnns 12
Entity Model¢ccitiiirenurinrnonnsasssanenanaasannns 14
Effort vs. Function PointsPlot ettt e et 28
Residual plot against independent variablettt enenn 3
Effort Model Regression Linesiiiiiirnrnenceennnnnnnnns 36
Schedule Model One Regression Lines 0 i iitiiiinnnnnnnanns 41
Schedule Model Two Regression Lines oo v v vt v et ensennnnonsaeas 45
Influential POINIS00ttt initinennnoennneenessonnnnens 54
ALLODSCIVALIONScovveventnvrnnesansncnnnsonss et 54
Effort Model Predicted vs Actuals0i ittt entteitnneonanas 65
Schedule Model Two Predicted vs. Actual Schedulecivvveennnn. 69
Schedule Model Two Predicted vs Actalccitivinniennnnnnnnns 73

10.

11,

12

List of Tables Page

Function Count (FC)o it vttt ittt teneonacsonconaanaseossonsns 10
Unadjusted Function Point Count EXMPIEo oo vt vneesnnenenneenns 15
Mapping Oracle Components to Mark I Function Points 23
SQL*Forms and SQL*Reports FunctionPoint Countc00eeennn 2
EffortModel Parameter Tests oot i viv v v o v o onoeesancannsasanns 37
Schedule Model One Parameter TeStS v v v et tovnnnnransasesas 42
Schedule Model Two Parameter TeStSo oo v vt v v v vt o v onaeescoanssens 46
MUDIE FACIOMS oo v ot et e ee e eeteeseeennennseneeneeeneennnns 52
Summary of Team ObSEIVAtONS i iiv et v ennoneeoeononenncees 58
80 Percent Prediction Intervals for Effort Model cccvvevvnnen. 65
80 Percent Prediction Intervals for Schedule Model Onec0... 69
80 Percent Prediction Intervals for Schedule Model Twovuuenn 73

AFIT/GSS/LSY/92D-4 Abstract

This saxdy investigated the results of measuring software support of Oracle database applications and
estimating the effort and schedule required to provide support. Software measurement was accomplished
with a variant of the function points metric, called Mark II function points, which is comprised of three
weighted parameters, inputs, entities, and outputs. A technique for mapping Mark II function points to
Oracle DBMS components was developed, and the size of the software support -« each project, per team,
was measured by tabulating and weighting the number of inputs, entities, and outputs that are added,
changed, and/or deleted. Software support effort was measured in work-hours and schedule in calendar-
weeks for given levels of function points. A data collection program was written to assist with tabulating
the measurements and also provided an option for sizing the support by analogy. Observations were
collected for 12 projects ranging up to 50 function points. The relationship between software support
measurement in Mark II function points and the resulting effort or schedule was extensively analyzed for
one and two person teams. A relationship determined by regression analysis was shown to be statistically
significant for both effort and schedule.

SOFTWARE SUPPORT MEASUREMENT AND ESTIMATING FOR ORACLE
DATABASE APPLICATIONS USING MARK I FUNCTION POINTS

L Introduction
L1 Background

A critical challenge for software support organizations is the management of changes to the supported
system. Software projects are conducted according to a plan based on an estimate of the size of the project.
The plan describes the expected schedule and effort needed to provide the software support.

The Air Force Institute of Technology has its own software support organization, the Systems Support
Division (AFIT/SCV), that provides computer support to the Institute. SCV manages all of AFTT’s software
requirements for communications-computer systems including studies, analyses, requirements definition,
design, development, documentation, testing, implementation, and training on unique software applications.
SCV conducts software project status briefings for senior AFIT staff. They also assure that computer support
contractors perform in compliance with all pertinent communications-compuier systems regulations and
the Quality Assurance Surveillance Plan (35:1). This research will focus on SCV's software support t0
applications, using a commercial relational database management system (DBMS) by Oracle corporation.
The DBMS includes a database engine that relates records of data to one another and it provides several
software tools to access the database. Some of the tools are SQL*Plus, SQL *Forms, and SQL*Reports.

The database query language that is used is SQL*Plus, which is an extension of the Structured Query
Language (SQL) as defincd by the International Business Machines corporation. SQL is a non-procedural
data access language. The term "non-procedural’ means that the programmer does not have o specify the
procedure for accessing data, but instead only has o specify what data is 0 be accessed (30:213). For
example, there are no "if-then-clse’ constructs and no means for making temporary computations.

SQL*Forms is a fourth generation application development language (4GL) that streamlines the
software development process by generating most of the user interface input and output sofiware details
for the programmer, as well as data access. "Fourth generation languages are defined as those that are non-
procedural in nature and end-user (requirements and specifications) oriented” (3:149). This correspondence

facilitates the partitioning of the software support requirement into meaningful software units of measure.
A consegquence of the ease of use of 4GLs is that they tend to restrict the variety of solutions, which creates
a close correspondence between the source code produced by the applications generator and the software
requirement itself. This allows the programmer to focus on assembling the functions that were requested
by the user of the database applications. SQL*Forms produces interactive "forms’ that allow the user to
store and retricve data. SCV uses version 2.3 of SQL*Forms. Another tool, SQL*Reports, extracts records
from the database and formats the output. SCV provides Oracle database software support by enhancing
the forms or reports that access the database.

L2 Specific Problem

Recent changes in the AFIT/SCYV software support environment requires SCV 10 more effectively use
available resources. Historically, SCV has relied upon expert judgement to estimate project schedules, but
is now faced with tighter budget constraints, requiring the same level of support with fewer resources. The
budget constraints have forced SCV to reduce its contracted support strength from seven to two analysts.
To partially compensate, SCV had a net increase in enlisted programmer support from five to six, as a result
of two NCOs leaving and three airmen arriving. The loss of the contractor support also represents a loss of
the expertise on which project estimates are based, requiring newly trained enlisted programmers to make
estimates. To meet this need, the Chief of the Systems Support Division has requested that thesis rescarch
be done in the area of software support measurement and estimating (34:151). Given a requirement to
change an existing Oracle database application, SCV needs to be able to predict how long it will take t0
deliver the change, so that planning and contracting decisions can be expedited. Consequently, SCV would
like to make accurate estimates of project size, effort and schedule.

13 Research Objective and Investigative Questions

The research objective is: to estimate the expected support effort and schedule given the size of an
Oracle database software support request. The investigative questions that directed this research are:
+ What is the most meaningful software size measure?
+ How much effort and schedule is required for given levels of software support?
o What is the relationship between the size and effort or schedule?

L4 Scope and Limitations

Only software support for Oracle database systems was tracked during the three-month data
collection period of this thesis. During this period, SCV was staffed with new contractors and several
new enlisted programmers, but no govemment civilian programmers. System accounting data relevant
10 project activities was not collected because automatic accounting is not activated in the SCV Oracle
environment. The software baseline supported by SCV has no documentation or formal review process,
and is managed as separate development and operational baselines.

LS Definitions for Measurement

» Analogy: characterizing the size of software to be developed relative to existing software.

+ Block: SQL*Forms components that are based on database tables.

» Calendar-week: the period of time that a software support project was open from start to finish.

« Entity: "is anything (object, real, or abstract) in the real world about which the system provides
information” (32:4).

« Environmental factors: any features about an organization or project other than size that may
influence effort and schedule.

« Field: data items that are displayed on the screen or printed in a report.

» 4GL: Fourth Generation Languages allow easy construction of screen-oriented applications.

« Function Points: a measure of the functionality of software that assigns points to software functions.

» LOC: an acronym for Line Of Code, which is a popular measurement of software.

o Metric: software measurement in general, such as LOCs or Function Points.

» Non-procedural language: a computer language for specifying what needs to be done, rather than
how to do it (30:213).

« SER: Software Enhancement Request is a request for software support from AFIT faculty and
administrative personnel to SCV.

« SQL*Forms: a 4GL that defines an interactive screen comprised of trigger steps, blocks, and fields.

+ SQL*Reports: an Oracle database access language to retricve and format data for output.

+ Work-hours: the hours spent exclusively on the software support project, per programmer.

« Tables: data files that are organized into columns of entity attributes and rows of entity instances.

« Trigger steps: a SQL*Forms mechanism to validate inputs.

« Virtual Machine: a computing machine that could be implemented using hardware eatirely, but
instead simple hardware operations are used by software o provide complex operations.

L6 Definiticns for Estimating

ANOVA: Analysis of variance.
COCOMO: an acronym for COnstructive COst MOdel (6:58).

» Deleted residuals: a measurement of the i-th residual when the fitted regression is based on the
cases excluding the i-th one (21:398).

+ Indicator variables: quantify a qualitative variable for inclusion in a regression model.

» Leverage: a measure of the distance between the values of a given observation and the means of
the values of the independent variable for all observations; it is used for outlier detection (21:395).

o LSBF: Least Squares Best Fit.

» Randomness: a lack of a systematic pattern.

* Residual: the difference between the observed value and the predicted value.

+ Specification: the extent to which a regression model is appropriate for the data.

+ SSE: Error sum of squares.

SSR: Regression sum of squares.
« SSTO: Total sum of squares.
Studentized deleted residuals: a deleted residual divided by its estimated standard deviation

(21:399).
» Type I error: deciding to reject the null hypothesis when in fact it is valid.

L7 Thesis Organization

Chapter One provides some background, defines the rescarch objective, and defines some termi-
nology relevant to this thesis.

Chapter Two reviews current literature on sofiware measurement and estimating. The review
focuses on two methods, the counting of lines of code and a very different method called function points.

Canplexitymeasmmdouranwuicsmalsorevicwed,a'swdlassonwmcostesﬁmaﬁngﬁmm.

Chapter Three describes the software support measurement methodology. The three software support
measurements that are collected are size, effort, and schedule. The sizing method chosen was Mark II
function points mapped to Oracle database software components. The effort is measured in work-hours and
the schedule in calendar-weeks. Software was written to collect the data and provide sizing by analogy,
using data dictionary reports.

Chapter Four describes the software support effort and schedule estimating methodology. The
prediction models developed are based on regression analysis of the programming teams’ effort and schedule
response to software support requests as sized by Mark II function points.

Chapter Five presents the regression analysis and the effort and schedule models for one and two
person teams.

Chapter Six contains conclusions from the rescarch and recommendations.

II. Literature Review

IL1 Overview

Prediction or forecasting of any kind is based on inputs. This literature review focuses primarily
on the types of software metrics that are used by the software industry as inputs o prediction models.
The primary software metrics reviewed and contrasted are lines of code and function points. Also, several
complexity measures are discussed. Diﬂ'amtvi:mqmlfactmthumyinﬂwmeﬂwsoﬁwmmm
were reviewed as well as existing effort and schedule estimating models.

I.2 Lines of Code (LOCs)

The most common measure of software size is lines of code. Rakos states that all software project
estimating methods "are crucially dependent upon granularization: breaking things into small pieces”
(25:128). Compared to a typical computer program, an individual line of code is a very small piece of the
software. To understand an LOC, familiarity with the concept of a virtual machine is helpful. Tanenbaum
describes different levels of virtual machines that exist on most computer systems. Each level has a code oc
language by which solutions to a problem are specified, and each level above level 2e10 can be translated
into lower levels (36:2-7).

The lowest level of virtual machines is the level zero, the digital logic level. At this Jowest level,
software is executed directly in the electronic circuits. At this low level, the semantics of the computer
program are very difficult for most people to comprehend. At level one, the microprogramming level,
a code is used to describe the computer’s transitions through states of operation. This microprogram
or microcode is represented by alphanumeric characters and special symbols. This level is much more
comprehensible than level zero, but it is still cryptic and inconvenient 10 use. At level two, the conventional
machine level, multiple microcode statements arc represented by single machine code statements. This
is easier to work with but still cambersome. Level three is the operating system which groups machine
code into operating system services. It is not until level four, the assembly language level, that substantial
applications can be developed by a programmer. Most programming however is done at level five, the
problem-oriented language level. At this level, English-like codes are used to specify the solution %0 the
problem. These codes are displayed in J ., and the size of the program is measured in terms of the

number of lines of code, or LOCs (36:2-7).

The most quoted source on LOCs is Barry Bochm who uses the term “source instruction’. This
term includes all program instructions created by project personnel and processed into machine code by
some combination of preprocessors, compilers, and assemblers. It excludes comment cards and unmodified
utility software. It includes job control language, format statements, and data declarations. Instructions
are defined as lines of code or card images. Thus, a line containing two or more source stalements counts
as one instruction; a five-line data declaration counts as five instructions (6:59). Bochm'’s is only one of
many definitions of how to count lines of code afier the code has been written.

Counting lines of code is popular because afier the code has been writsen, there is a high correlation
between LOCs and the effort that produced those lines of code. But a size estimate needs to be accomplished
before the lines of code are written. Bochim takes it for granted that the software personne! can make
accurate estimates of how many LOCs will be writien to solve the problem at hand, but wams that
underestimates can happen for three reasons. "First, people are basically optimistic and desire to please.
Second, people tend to have incomplete recall of previous experience. Third, people are generally not
familiar with the entire software job” (6:320-321). In addition to LOCs, the software support arganization
and software baseline are characterized by environmental factors.

Barry Boehm created a cost estimating tool based on LOCs called the Constructive Cost Model
(COCOMO). In COCOMO, environmental factors are a way to differentiate the unique aspects of different
projects and environments. The factors excluded from COCOMO are: type of application, language
Jevel, size measures other than lines of code, requirements volatility, personnel continuity, management
quality, customer interface quality, amount of documentation, hardware configuration, security and privacy
restrictions (6:345-346,475). The factors included in COCOMO are in four groups:

1. product attributes such as required software reliability, database size, and product complexity;

2. computer attributes such as execution time constraints, main storage constraints, virtual machine
volatility, and computer tumaround time;

3. personnel attributes such as analyst capability, applications experience, programmer capability,

4. project attributes such a3 modem programming practices, use of software tools, and required
development schedule. (6:345-346,475)

The analyst provides inputs to COCOMO by characterizing the environmental factors on various
scales and by estimating how many LOCs will eventually be produced. Then COCOMO estimates the
effort and schedule of the project based on the analyst’s inputs. However, the use of LOCs as a umit of
software measure is the subject of much criticism.

Capers Jones points out the critical importance that measurement has contributed to the progress of
science in general and then says that software measurement is probably the most deficient aspect of the
field of software engincering. He is not saying that in the last 35 years of computer history no one has
tried to measure software, rather he is saying that the accepted measurements are not measuring what they
purport to measure. He specifically criticizes the LOC measurement for creating paradoxical information
and he lists three problems (18:49).

First, there has never been a national or international standard for a LOC that encompasses all
procedural languages. Some line counts are defined by physical carriage retuns, while others are defined
logically by delimiters such as a semicolon. The line of code counts can contain one, some or all of the
following: executable statements, data definitions, comments, and blank lines. There is little agreement
on how many times reused code should be counted: once, each time it is reused, or never. There's even
more problems when different computer languages are mixed to together, and how to count additions,
changes, and deletions (18:49).

Second, software can be produced by such methods as program generators, spreadsheets, graphic
icons, reusable modules of unknown size, and inheritance, wherein entities such as lines of code are
totally irrelevant (18:49). This is especially true of the 4GL SQL.*Forms, where software is developed by
interacting with the applications generation screen. Source lines of code are produced by the applications
generator, but it is not necessary to look at them to complete a project. So if the programmer chooses not
to ever look at them, for practical purposes they do not exist

Third, LOC metrics paradoxically move backwards as the level of the language gets higher, so that
the most powerful and advanced languages appear to be less productive than the more primitive low-level
languages (18:49). To understand the productivity paradox, recall the concept of virtual machines. When
a higher level machine groups together many instructions of a lower leve! machine, then that higher level
instruction does the work of many lower level instructions but only counts as one LOC. For example, if a
programmer using a lower level languages creates 1000 LOCs 0 solve a problem and another programmer
using a higher level language solves the same problem with only 100 LOCs, then by LOC count the

first programmer is considered 10 have solved a problem ten times larger than the other programmer.
When a fixed number of functions is delivered with increasing numbers of LOCS, productivity drops when
measured in terms of functions per LOC, as depicted in Figure 1:

Productivi

A

Figure 1. Productivity Paradox

Counting LOCs also leads 10 a quality paradox because high-quality programs are usually more
succinct than programs that are hastily developed in an ad hoc manner. If the more succinct programs
have fewer LOCs than the lower quality programs, an equal number of errors results in a higher eror per
LOC ratio than the lower quality program. In fact, if a lower quality program had five times as many
LOCs than the more succinct program, then one error in the high quality program would have an error
per LOC ratio equal to the Jower quality program with five errors. In other words, if these two programs
are offered to satisfy the same requirement, where one has five errors while the other has one error, then
by using errors per LOC, they are deemed to be of equal quality. These paradoxes exist because the
premise of using LOCs as a measure of sofiware is that the LOCs themselves are the solution 10 a software
requirement, rather than the functionality of the software.

H.3 Albrecht’s Function Points

Function points are fundamentally different than lines of code. The premise of function point
analysis is to measure the software functionality delivered to the user. The term *functionality’ shifts the
emphasis away from how the LOCs implement the software, and instcad emphasize what the software
does. For example, if a payroll program is supposed to prompt the user for a social security number, locate
that number in an employee record, and then display that employee’s end-of-month pay, then the program

performs three functions: receives input, processes a record, and outputs the results. When counting
functionality in this way, the LOCs used to implement the software are irrelevant, and the focus is on
the software behavior. Continuing with the payroll example, if 10 programmers developed software to
perform the same payroll functions, there would be 10 different LOC counts due to individual differences
and the inherent variety associated with alternate software solutions. However, the number of functions
provided by those 10 programmers would be identical. The software is the result of a request by the user
to perform these functions, and function points are a measurement of the functionality required by, and
valued by the user of the software. Allan Albrecht, an IBM researcher, introduced a means of quantifying
software functionality by assigning points to five categories of functions based on their value to the user.
Table 1 introduces the categories of function points. '

Function Count (FC)

Type | Description Simple | Average Complex
IT External Input x3 x4 x6

oT External Output x4 x5 x7

FT Logical Internal File x7 x10 x15

El External Interface File x5 x7 x10

QT External Inquiry x3 x4 x6

« Outputs are items of business information processed by the computer for the end user.
* Inquiries are direct inquiries into a database or master file that look for specific data,
use simple keys, require immediate response, and perfarm no update functions.
Inputs are items of business data sent by the user to the computer for processing and
to add, change, or delete something.

Files arc data stored for an application, as logically viewed by the user.

Interfaces are data stored elsewhere by another application but used by the one under
evaluation. (12:5)

Since Albrecht uses the functional value of the software as determined by the user as a guideline for
subjectively identifying function points, there are significant ambiguities. To reduce ambiguities associated
with assigning function points, Brian Dreger dedicated an entire book to enumerating rules for assigning
function points. To identify outputs, Dreger says "count each unique data or control output procedurally

10

generated that leaves the application boundary™ (12:10). To identify inputs, "count each unique user data
or control input that enters the application boundary and also updates (adds to, changes, or deletes from)
a logical internal file, data set, table, or independent data item™ (12:16). Inputs and outputs arc considered
unique in so far as they have different formats or require different processing logic. Since the function
point analysis is independent of any language, the measurement avoids the distracting and paradoxical
details of lines of code (1:1). There arc three steps in determining function points.

First, it is necessary to classify and count the five user function types delivered by the development
project. These are external input, external outputs, internal file types, interface file types, and inquiry
types. Each of the functions that are assigned to one of the five categorics is further classified as: complex,
average, or simple. The weights in Table 1 show how the total unadjusted function count (FC) is computed.

The second step is to calculate the processing complexity (PC) by ranking 14 environmental factors
according to degree of influence on a scale from zero to five. The factors are: data communications,
distributed data or processing, performance objectives, heavily-used configuration, transaction rate, on-line
data entry, end user efficiency, on-line update, complex processing, reusability, conversion and installation
case, operational ease, multiple-site use, and facility change (2:640). The processing complexity adjustment
(PCA) is:

PCA = 0.65+ (0.01+ PC) 4}

Third, the delivered function points (FP) are calculated by multiplying the unadjusted function
points times the adjustment factors (12:71):

FP=FC»PCA)

Jones notes that after ten years of use, "the cumrent national average for software productivity at the
project level in the United States appears to be about five function points per staff-month™ (18:11). Taking
into account all the staff-months of an entire software development corporation and the function points
delivered, Jones says a strategic or corporate productivity measurement averages 1.5 function points per
staff-month. These numbers are for all types of projects and Jones notes that for management information
systems (such as SCV’s system), the productivity is higher than average at about eight function points per

11

staff-month. Jmesakouysdmamainwnnmpmgmnn;amukeonmppmafahueﬁnemging
from 500 to 1500 function points, depending on the structuredness of the design (18:81,147).

Charles Behrens studied 25 development projects in the data processing organization of a large
financial institution. He chose an hour as the unit of time and then calculated the output in function points
per hour and also the unit cost in hours per function point. In 1980, 11 projects ranged in size from 27 w0
599 function points and from 600 to 28,700 hours. Productivity measures ranged from 9.7 to 47.9 hours
per function point. The mean was 18.3 hours per function point. In 1981, 14 projects ranged in size from
22 to0 435 function points and 85 to 10,600 hours. Productivity measures ranged from 2.1 to 23.4 hours
per function point with a mean of 9.4 (4:649). The intcresting effect revealed in Behrens® research is that
when unit costs are plotted against function points, the line of best fit is curving upward. The interpretation
is that "as projects become larger, their unit costs become higher as shown in Figure 2, suggesting that
everything else being equal, small projects are more productive than large projects” (4:649).

Unit A

Cost

Figure 2. Behren’s Research

Darlene Brown described methods of calkulating productivity using function points and included
maintenance activitics. She chose a labor-month as the unit of time and calculated the ratio of function
points delivered 1o the number of labor-months. She divided maintenance into two groups, enhancement
activities and support activities. The difference between the two is that enhancement changes the functions
while support does not change the functions but effort is spent to satisfy some user need. The measure for
enhancement productivity is the change rate and for support is the support rate (8:27-28). Darlene Brown
discusses the use of productivity rates as a means of predicting future work efforis. She distinguishes
forecasts by new development, enhancement, and support. For each case she says that after the analyst
has determined the number of function points that will be developed, enhanced, or suppored, a simple

12

multiplication of the appropriate rate times the function points will give the number of labor months to
do the job (8:30).

Several authors advocate that software metrics and estimation techniques should be tailored for
a specific site. Ian Sommerville states that "the parameters associated with different models are highly
organizational dependent” (31:516). Tom DeMarco offers the insight that, "software metrics cannot be
treated as off-the-shelf products, and that organizations that adapt techniques and measures for their own
use always seem t0 come out ahead” (10:160). Bryan Raicliff and Anthony Rollo say that due 0 an
organization’s development paradigm function point analysis "will require substantial tailoring t0 fit an
operational development framework™ (26:80). Michiel van Geauchten conducted a survey of software
engineers opinions as to why software projects are delayed and found that "the reasons were specific 10
the engineering environment in question because of differences among the software engineers, the type of
software developed, and the organization of the department" (37:585).

June Vemner and Graham Tate describe a case study for a development project that used a 4GL
called ALL. The goal was to quickly build an information system for a carrespondence school. They
used function point analysis to estimate the size of the project, then they converted the function points
to COBOL and adjusted for the presumed benefit of using a 4GL. They underestimated actual effort by
23 percent, but underestimated the schedule by only 3 percent (38:15-22). The results suggest that the
analysts had a consistent measure of software size using function points before the code development.

Graham Low and Ross Jefery report that their studies indicate that "function points appear to be a
more consistent a priori measure of system size than lines of code” (19:71). Low and Jefery report the
results of an empirical research project into the consistency and limitations of function points as an a priori
measure of system size compared to the traditional lines of code measure (19:64). They discuss some lines
of code (LOC) attributes and variations and then state that using LOCs requires an "a priori estimate of
sysiem size based on past experience of the person performing the estimate with similar projects and/or
systems” (19:64). The researchers go on to say that to the best of their knowledge “the consistency of
LOCs as an a priori measure of system size has not been tested” (19:64).

The concept of counting function points has been studied extensively, but not without criticism.
Bochm notes that function points suffer in terms of clarity and objectivity (6:482). Charles Symons
analyzed the use of function points on some large projects and reported some problems with ambiguity.
He devised a new approach called Mark I function points (32:5).

13

.4 Symons’ Mark II Function Points

Symons thinks that Albrecht’s components are difficult to identify in a relational database envi-
ronment, and difficult to interpret for on-line interactive transactions on the same screen. He questions
bow Albrecht arrived at the weights and levels of complexity when counting unadjusted function points.
Symons does not think that the list of 14 environmental factors is exhaustive and that each of them should
not carry the same degrees of influence. Also, he criticizes the lack of a measure of the interal processing
complexity and the treatment of system components as discrete rather than integrated (33:18-22).

Symons has augmented the function point concept and calls it Mark IT function points. It is based
on a similar premise of measuring functionality as Albrecht’s function points, except that Symons’ method
is more oriented towards development effort, than user value. Instead of five categories, Symons has three:
inputs, entities, and outputs. The input and output categories also include Albrecht’s interface caiegory.
For the new entity category. he applies entity-relationship analysis. For the purpose of counting function
points, entities can be thought of as a combination of Albrecht’s files and inquiries.

Identifying the complexity of each component is addressed by "counting the number of entity-types
referenced by the transaction-type” (32:5). Referenced means created, updated, read, or deleted. The eatity
model in Figure 3 shows how entity types relate to each other and the lines with three prongs at onc end
indicate a one-to-many relationship between entities, (for example, a single customer can be associated
with many orders).

Figure 3. Entity Model (33:26)

14

Symons’ "transaction’ construct, is "a unique input/process/output combination triggered by a unique
event of interest to the user, or need to retrieve information” (33:23). Table 2 shows an example of function
points counts by transaction. Based on the tabulations of inputs, outputs, and entities, the Mark II formula

Table 2

Unadjusted Function Point Count Example (33:26)

TRANSACTION INPUTS ENTITIES OUTPUTS
Add Customer 53 1 3
Inquire Stock 2 3 10
Add Order Head 20 2 12
Add Order Item 6 5 6
Inquire Quantity 2 4
Report Stock 1 3 21
TOTAL 84 18 56
for information processing size in unadjusted function points is:
UFP=W; x Ni+WEg x Nge + Wo x No, where 3)

N; = the number of input data element types,

Wi = weigl.i of an input data element type,

Ne = number of entity-type references,

W = weight of an entity-type reference,

No = number of output data clement types,

Wo = weight of an output data element type, and

Ni, Ng, and No are each summed over all transaction-types (33:30).
Symons added five environmental factors to Albrecht’s 14. The additional five factors are the needs:

to interface with other applications, for special security features, to provide direct access for third parties,
for documentation requirements, and for special user training facilities, such as a training subsystem.
(32:7). These additional five factors added to Albrecht’s 14 create a total of 19 factors. An additional 20th

15

factor emerged later, as the need to define, select, and install special hardware or software uniquely for the
application (32:7). Symons calls these factors the degrees of influence (DI).

After analyzing 32 systems, Symons obtained weights which he calls the 'Industry Average Set”:
W=0.58, Wp=1.66, Wo=0.26 (33:30). The resulting unadjusted function points (UFP) formula is:

UFP=0.58 x N;+1.66 x Ng +0.26 x No @

The function point (FP) count is adjusted by the sum of the degrees of influence in the technical complexity
adjustment (TCA) (33:80):

TCA=0.65+0.005x y_ DI 0

FP=UFPxTCA ©)

Capers Jones has praise and criticism for the Mark II Function Points defined by Symons. Jones
thinks that Symons’ idea of counting entities and relationships adds a new dimension of rigor to function
point counting. However, he also thinks that Symons’ shift away from Albrecht’s user value basis to a
development effort basis is a step backwards. Jones also says that Mark IT Function Points can result in
counts that are up to 30% higher than Albrecht’s function points (18:97).

II.S Jones’ Feature Points

A technique called feature points was created by Capers Jones. He supplements function points
as defined by Albrecht with a sixth parameter for real-time and sysiems software, by categorizing the
complexity of the algorithms (18:9). There are many definitions of algorithms, but for the purpose of
counting, Jones states that "an algorithm is a bounded computational problem which is included within a
specific computer program” (18:84). He also says the process of assigning the complexity of algorithms
is ad hoc and is in need of a rigorous taxonomy.

The new algorithmic parameter is assigned a weight ranging from one to ten with a default weight
of three. Also, the weight for logical data files from Albrecht’s average value of ten is reduced to seven,
reflecting the lesser significance of logical files to systems software. Including algorithmic considerations
generates higher feature point counts for sysiems software than for MIS software. Symons praises Jones for
introducing a measure of algorithmic complexity, but warns that it is difficult to establish standard categories

16

of algorithms: "Much work has been done to introduce measures for the complexity of algorithms, but
the data to measure their "size’ are not generally available early in the system life in a form suitable for
a function point metric® (33:42).

IL.6 Halstead’s Software Scieace

MmblmemmwMW&Wammmm
science. He wanted 0 count: the number of errors, the effort to understand a program, and the effort to
encode a program (3:1-2). He based his counts on operators and operands. First, size is computed:

* m = unique operators,
* M = unique operands,
sn=mn +mny,

¢ N; = total operators,
* N; = total operands,
e size N=N; + N,.

Halstead then used this size computation to develop a formula for the volume, V, which characterizes
the encoding necessary for a particular program. He also defined potential volume, V*, as the minimum
encoding of a program, but he offered no formula for V* (3:1-2).

V=Nxlog,n Y]

He used V and V* to characterize the level of abstraction of a program, L, but since the value V* is not
available, an approximation for L was devised:

X == ®

Halstead also characterized the effort, E, to understand a program as the number of ‘clementary mental
discriminations’ divided by the level of abstraction, implying that the more abstract the program, the easier
it was t0 understand:

Nlogan _ - Nlogan V
E=—>— estimasied by F = e— = —
L vy L L

®)

Based on an article by a psychologist that said humans process between five and 22 elementary mental
discriminations per second, Halstead’s experiments seemed to confirm that hypothesis with a value of 18.

17

Consequently, he used the value to compute the time, T, to encode a program:

T= (10)

|ty
t
&t

IL7 McCabe’s Cyclomstic Complexity

Thomas McCabe devised a measurement, v(G), for characterizing the difficulty of testing software
and it is called "cyclomatic complexity’:

v(G)=e~n+2p (11)

The letter G is a graph representing the paths of flow in a program, e is the number of edges in the
graph, n is the number of nodes, and p is the number of fully connected components (20:308). A rule of
thumb is that a cyclomatic number greater than 10 characterizes a program that will be difficult to test.
However, "case’ statements tend to drive up the cyclomatic number, and they are subjectively considered
an abstraction that makes programs easier to understand (and therefore easier to test). Despite the apparent
simplifying effect of case statements, they create many paths that require consideration for testing purposes,
and 30 the high cyclomatic number does characterize that testing problem.

II.8 Other Sizing Methods

There are a variety of other measures of software. Henry and Lewis present "an experiment
that introduces a non-destructive method for integrating metrics into a large-scale commercial software
development environment” (16:89). They discuss three categaories of metrics: code, structure, and hybrid
metrics. Code metrics typically measure the source code instruction within a single module and have
limited value for the total software system. "Structure metrics concentraie on the overall structure of a
software system by evaluating the inter-connectivity among procedures”™ (16:90). Henry and Lewis used
structure metrics called Kafura's information fliow and Belady's cluster metric.

Hmmmwmmmdmmmammm
(15:510-518). They count the flows into and out of a module as fan-ins and fan-outs. The informa-
tion flow (IF) metric is based on the fan-in and fan-out of the modules, and the length of the module which

is some complexity metric of the measwrer’s choice. The information flow (TF) is:

IF=length x (fanin x fanout) (12

Henry and Lewis also discussed hybrid metrics which are code and structure metrics combined. They
call the heart of their structure metrics the communication database because it "ideatifies communication
lines among modules” (16:90). This is similar to a data dictionary. Their communication database is "used
to inform a system developer of the proper order in which 0 rebuild the components of a system, based
on the use of specific modules by other modules” (16:91). This is critical information for estimating the
scope and effort of a work order, because a change 10 one module may require a change to other modules
that use the first one being changed.

Another aggregate metric is measured across time. Henk Blanken discusses "query processing in a
database management system (DBMS) that has complete control over versioned compiex objects” (5:1).
These objects are called complex because in addition to the complex relationships between data structures,
complex objects record a history of the changes to the object. From the point of view of someone who
manages the software configuration of modules, such a database could store source code and the history
of changes to it. Blanken discusses what he calls "as-of-querics’ and *walk-through-time’ queries (5:2).
An as-of-query retrieves information that was current as of a certain time and date. The more relevant
query for this literature review is the walk-through-time (WTT) query. He states that 8 WTT query could
be constructed "by generating an as-of query for each moment of change” (5:2).

IL9 Estimating Effort and Schedule

Software cost estimating models have a reputation of being inaccurate. Bochm rates a software cost
estimation model as good if it is within 20 percent of actual costs 70 percent of the time, within classes
of projects that were used to calibrate the model (6:32). The predictions are based primarily on the size
of the project, along with a variety of other factors. John Rakos states that “there are only two factors that
affect the duration of a task: the complexity of the task and the productivity of the personnel performing
it" (25:132). Most models like COCOMO allow a persomnel factor 10 be characterized and submitied as
input to the model. Considering the interpersonal dynamics involved in software development, a tcam of
programmers can have a perfarmance response different from another tcam, 30 it seems reasonsbie for an

19

organization that is tailoring its own model, to track the performance of specific teams as if they were
individuals. Humphrey reports a method for projecting software productivity by collecting data for specific
individuals or for a specific group of individuals working together as a team. He also points out that
individuals® productivity follows the individual’s leaming curve, and so successive development times are
autocorrelated. He cautions that the collected data is unique to an individual or team:

It should be emphasized, however, that if the database concerns the productivity experience

of one programmer, the projected productivity values are only valid for that individual. If

team projections are desired, relevant team experience data should be used (17:196).

Lawrence Putnam defined methodologies for estimating effort and schedule for software projects
with different numbers of programmers. He describes small, and medium to large projects, with mediom
projects having four or more people. Putnam says that there is enough similarity in the group problem-
solving process that groups of four or more people tend to have similar problem solving responses regardiess
of team composition. However, for a small group of one, two, or three people, there is greater variation
in probiem solving response from group to group due to individual differences (24:216).

IL10 Summary

The quality of a prediction can be no better than the quality of the inputs to the prediction process.
Existing software effort estimation models use size as the primary input. This review focused on software
size measurements such as lines of code and function points. The essential difference between LOCs
and function points is that LOCs measure the solution to a software requirement, while function points
measure the functionality in the requirement itself regardiess of how many LOCs were created. Other
popular sizing methods focus more toward measuring the complexity of software based on some form of
software unit interrelationships.

In addition to size, many environmental factors are quantified as inputs o effort estimation models.
These factors are intended to characterize the uniqueness of a given sofiware organization for software
cost estimating tools intended for industry wide use. Finally, case studies were reviewed that explored the
problem of establishing programmer productivity and predicting project duration.

III. Measurement Methodology

Im.1 Overview

Data collection methods were developed 10 satisfy the research objective: 10 estimate the expected
support effort and schedule given the size of an Oracle database software support request. This chapter
addresses the investigative questions related 10 softiware support sizing, effort, and schedule measurement:

* What is the most meaningful software size measure?
+ How much effort and schedule are required for given levels of support?

The guiding principles for selecting a meaningful sizing method is 1o collect data in a way that is:
1. unambiguous and
2. casily estimated before the project begins.

In Chapter Two, Rakos noted that software project estimating depends upon breaking software into
small pieces, but if the pieces are w00 small the project staff could spend an inordinate amount of time
trying o identify every last piece. The benefit of fine granularity should not come at a cost that is a large
proportion of the project itself. Consequently, there is a trade-off between having less ambiguity in the
sizing definition at the same time as casy estimation before the project begins.

IIL2 Software Unit of Measure

Oracle SQL*Forms and SQL*Reports have little if any algorithmic complexity, and consequently all
of the various complexity metrics are of little use. Since SQL*Forms and SQL*Reports are represented by
source lines of code, a look at LOC counting was wammanted. Upon closer examination LOCs are not very
meaningful. First, they are very ambiguous as highlighted by Capers Jones, and Barry Bochm cven says
that, "source instructions are not a uniform commodity, nor are they the essence of the desired product”
(6:32). In fact, they are even less meaningful in the case of SQL*Forms, because the LOCs are normally
machine generated and possibly unseen by the programmer. The literature indicates that, before the project
begins, it is easier 10 estimate function points than LOCs (19:1). The close association of function points
with the functionality required of the software increased its appeal as an independent varisble characterizing
software size. However, the ambiguous separation of inquiries and interfaces from inputs and outputs as
defined by Albrecht leaves a lot of room for erroneous categorization, and is therefore less objective. Capers

21

Jo:mpoimsomﬂmalﬂnughbmgu’sbooksmﬂﬂly@lishucomismmramﬁngmm
points, Dreger varies from the way Albrecht counts. "Notably, Dreger tends t0 accumulate slightly more
kinds of things for inputs, outputs, and inquiries than would be normal when using the regular (Albrecht)
IBM method” (18:98-99). Besides, having to master all the rules that fill a book is not a good candidate
for making easy size estimates before the project begins. Also, Albrecht’s category for logical files is not
casily applied to relational databases. Symons list other ambiguities. He notices a problem with on-line,
interactive transactions, where the same screen processes inputs and outputs, and he asks several questions:

* Is the screen to be counted as an input or output or both ?

= Are the logical file references (which we need to know for determining complexity) made from the

input or the output, or both ?
* Is a retricve-before-update the same as an inquiry ? (33:19)

Of all the sizing techniques reviewed, Mark I function points appear to be both unambiguous and
casy to estimate before a project begins. For these reasons, Symons’ distinct calegorization of inputs,
outputs, and entities will be used.

I3 Oracle Software Measurement

The first step is to identify the Mark II inputs, entities, and outputs involved with a given Software
Enhancement Request (SER). Inputs comprise that part of the software associated with display preparation
and data entry validation. Outputs are associated with preparation for display or printing. Entities involve all
work between the inputs and outputs, such as database accesses and data manipulations (33:87). Symons
summarizes:

The task then is to find properties of the input, process, and output components of each

logical transaction type which are casily identifiable at the stage of external design of the

systems, are intelligible to the user, and can be calibrated 30 that the weights for each of the

components are based on practical experience (32:4).

For the Oracle database management system, SQL*Forms and SQL*Reports components were
mapped to function points as defined by Symons. A trigger step is associated with data entry validation
and cursor movement, 30 it was mapped to Mark II inputs. A SQL*Report did not have inputs counted
since it is not used for data entry into the database. SQL*Forms are based on ficlds that define how
the output will look, so fields were counted as Mark II outputs. SQL*Reports use "select’ siatements to

extract database entries for subsequent output, 30 "select’ statements were mapped (0o Mark 11 outputs.
SQL*Forms have one or more blocks that are based on database tables or entities, and are used to retricve
and manipulate data. The blocks were counted as Mark IT entitics. SQL *Reports are also based on lables,
30 tables count as Mark II entities. A single SQL*Form itself was counted as a Mark II transaction, as was
a SQL*Report. This mapping Mark II function points to Oracle components shown in Table 3 satisfies
both guiding principles for selecting a measurement technigue stated in the overview:

1. unambiguous and

2. easily estimated before the project begins.

Table 3

Mapping Oracle Components to Mark II Function Poiats

Mark 11 Terminology | SQL*Forms Terminology | SQL*Reports Terminology
Transaction A form A report

Input Trigger-step na

Entity Block Table

Output Field Select

First, blocks, fields, and trigger-steps are sufficiently unambiguous that one cannot be confused
with the other. Second, the mapping allows for casy estimates because the programmer can characterize
software size in terms of familiar and meaningful Oracle compoents. The programmers provided the
function points count after both the analysis and the design were compieted. The environmental factors are
considered stable and not varying across projects, and so were not used to adjust the function points. An
illustration of the functional model for counting is shown in Table 4, which revises Table 2 on page 15 in
Chapter Two by substituting SQL*Forms and SQL*Reports terminology, with the Mark 11 serminology:

23

Table 4

SQL*Forms and SQL*Reports Function Point Count

SQL*FORMS or | TRIGGER-STEPS | BLOCKS or FIELDS or
SQL*REPORTS TABLES SELECTS

(transactions) (inputs) (entities) (outputs)
Add_Customer 3
Inquire_Stock 10
Add_Header 12
Add_Item 6
Inquire_Quantity 4
Report_Stock 21
TOTAL 18 56

WilalwuiINnjw] -

EEEEEE

IIl.4 Effort and Schedule Measurement

Symmsmmeﬂmandschednhinlmiuofw&kmmm-weeks. He defines work-
hours as “one hour of work by one person, including normal personal breaks, but excluding major breaks
such as for lunch™ (33:84). The programmers recorded the number of hours speat exclusively on a given
project per person. Any hours spent on activities other than the project were not included in the project’s
work-hours. For a two-person team, the team’s work-hours were the sum of each programmer’s hours.
The measurements were accurate to one tenth of an hour.

The programmers recorded the number of calendar-weeks from the day the project began to its
completion. The count of calendar-weeks included work on the project and any other demands upon the
programmers. mcamtdweehwfamemjeamddidvnuv:ybymm'ﬁma&dﬂw
measurement of work-hours. The measurements are accurate t0 one tenth of a five-day week, or about
half of a day.

IILS Data Collection Program

A data collection program is listed in Appendix H, and was writien 0 assist with data collection
in two ways. First, the program will simply prompt for the size of the software support characterized in

4

terms of Mark II function points that are added, changed, or deleted. Second, the program provides the
option of ‘sizing by analogy’ in the case of an entirely new transaction being added. Sizing by analogy was
accomplished by scanning Oracle DBMS data dictionary reports. An exampie of a data dictionary report
is listed in Appendix F. The data collection program is written in the Ada language. The program could
have been written using SQL*Reports, thereby directly accessing the data dictionary at the same time as
providing automated assistance with sizing and estimating. However, the expressivencss and generality of
the language was uncertain at the beginning of the development of the program. With Ada, the development
was uneventful due to the availability of a debugged library of reusable, generic components known as
the Booch Components (7:71).

For purposes of sizing by analogy, the SQL*Forms source code will be reduced to the parts essential
for counting, using a DEC VAX DCL command file listed in Appendix E, that invokes a regular expression
parser, ‘fgrep’. The parser reads search pattens from the file fp2.re, also in Appendix E. If any lines in
the data dictionary report contain the search patterns, then those lines are written to a different file for
the function point counting portion of the data collection program to read. An example of reduced source
code for a SQL*Form is in Appendix E, and shows trigger steps, blocks, and fields. Symons suggests
computing "Mark II unadjusted function points automatically from 2 functional model of a system stored
for example in a data dictionary” (32:10). The output from an Oracle SQL*Reports program in Appendix
G for extracting a functional model from the data dictionary is the input to the regular expression parser
that reduces the data dictionary report.

When an analyst receives a software engineering request, analysis is performed and the extent of
changes necessary are identified and collected. The analyst first invokes the Digital Equipment Corporation
VAX/VMS control language command file that reduces the size of the source code reports to be used for
estimating by analogy. When sizing by analogy, the data entry program will scan the reduced SQL *Forms
source listing for Mark IT function points. The software support requested by the SER will be broken
out into additions, changes and deletions of inputs, processes, outputs and entire forms and/or reports.
The data collection program will provide a prompt for sizing, estimating or reporting actual results. After
choosing the sizing option, the analyst enters a one to five digit SER number, and cach member of the
_ team working on this particular SER. A brief explanation is displayed, requesting forms or reports to be
added, changed or deleted to support the SER.

» Added means creating a completely new form or report.

25

o Changed means that within an existing form (or report), blocks, fields, and/or steps (or tables and
sclects) will be added, changed or deleted.
¢ Deleted means completely deleting an existing form or report.
The analyst is now prompted for one or more of the software support actions for one or more forms.
If the analyst chooses to enter forms that need to be added, an explanation appears telling that the form size
will be estimated by analogy to an existing form with which analyst is familiar. If the analyst chooses to
enter existing forms that need to be changed or deleted, then prompts appear to receive the names of those
forms. The program then displays a message telling the analyst that it is scanning the forms to count Mark
II function points, and then prompts for changes within the forms that were identified as requiring changes.
First the program asks how many trigger steps, blocks or fields will be added. Next, it asks how
many trigger steps, blocks, or fields will be changed. Last, how many trigger steps, blocks, or fields will
be deleted. The program then retums to the main menu and at this point the analyst selects the Estimate
option. The screen displays the size of the current SER in terms of Mark II function points. At the main
prompt, the analyst can enter a question mark and receive elaboration of the data eatry process. After
the SER is completed, the analyst reports work-hours spent on changes and testing, and calendar weeks
elapsed during changes and testing.

III.6 Summary

To satisfy the research objective, the method of answering the investigative questions related to
software support sizing, effort, and schedule measurement is described in this chapter. As a result of the
literature review the chosen software size measure is Mark II function points. The reason for this choice
is that Mark II function points are both unambiguous and easy to estimate before a project begins, and
mmhgﬁﬂycampaﬂmﬂwnﬁwmmmmmmmmmmm
considered stable and not varying across projects, and were not used to adjust the function points. Mark
11 function points are mapped to Oracle database software components in SQL*Forms and SQL*Reports.
Software assisted with data collection and sizing by analogy, using the data dictionary reports produced
by an Oracle SQL*Reports program used by the SCV programmers.

IV. Estimating Methodology

IVl Overview

Several models for predicting project effort and schedule were constructed 0 satisfy the research
objective: 10 estimate the expected software support effort and schedule given the size of an Orxcle
MMSWWL This chapter addresses the investigative question related to estimating:
What is the relationship between the size and effort or schedule? In addition to the sclection of Mark II
function points as the software unit of measure, Symons’ ierminology for effort and schedule units were
also used, namely, work-hours and calendar-weeks (33:140-142). Descriptive statistics were used t0 focus
the regression analysis. The software used for analysis was the Statistical Analysis System (SAS). Within
SAS a procedure known as PROC CHART provided histograms for the data (28:69-95) and PROC REG
performed the regression computations (29:773-876).

Having chosen Mark II function points as the metric, it would have been convenient to use a
commercial off-the-shelf cost-estimation tool based on Mark II function points. A company named Strategic
Systems Technology provides just such a software cost-estimating tool called Before You Leap II, or BYL
II. Symons cites it for its case of use and flexibility (33:177). Unfortunately, BYL II was not available

for this research.

IV2 Population

The populations of interest depend on the composition of the programming teams. If one individual
is working on the project, then the population of interest is the individual’s response to the size of the
software support requested as measured in Mark 11 function points. If two individuals are working on the
team, then the population of interest is the response for that particular pair of programmers. For a project
requiring two programmers, the need for interpersonal communication and coordination adds an additional
activity to the effort, and therefore a different population of responses than for a single programmer.

IV3 Descriptive Analysis

The desc iptive analysis tabulates and summarizes the observed teams’ responses to given levels of
software support requests as measured by Mark II function points. The response is measured in work-hours
expended within a schedule of calendar weeks. The statistical software procedure SAS PROC CHART
created histograms of the data collected, which are listed in Appendix A. Also, scatter plots graphically
display the relationship between function points and effort or schedule.

IV4 Regression Analysis

A regression analysis was performed to determine the nature of the relationship between the predictor
(Mark II function points) and the response (effort and schedule) by means of a least squares best fit (LSBF)
regression line. Figure 4 illustrates a simple regression plot relating function points to effort.

Effont

[/ /S

Figure 4. Effort vs. Function Points Plot

IVS Indicator Variables

To allow for different teams’ responses to the same level of function points, indicator variables
denote team composition in the regression models. Four teams (A, B, C, and D) would be denoted with
only three indicator variables (I;, I, and L):

Team I, I; Is
A 1 0 0
B 0 1 0 13)
C 0 0 1
D 0 0 0

Team D is represented in this model when all three indicator variables are equal to zero. A model with
three indicator variables would have to estimate a slope and intercept for each of the four teams, or eight
parameters (21:351). With 12 observations though, estimating cight parameters reduces the degrees of
freedom to four. Consequently, only one indicator variable was used to denote a two-member team versus
a single programmer, preserving eight degrees of freedom for estimating four parameters. The indicator
variable assumed the value of one for team D, and zero otherwise. Of the four teams, team D was
subjectively determined to have responses likely to differ the most from other tcams. Since team D is
the only team with more than one programmer it has a line of communication between programmers that
the other teams do not have. Teams A, B, and C represent three different individual programmers. These
classifications lead to the initial models for effort and schedule.

IV6 Effort Model

Work-Hours = 8o + Sjufp + 821 + falufp + e.
» }=0 : Work-Hours = 8y + Siufp +¢, for tcams A, B, and C.

* I=1 : Work-Hours = (8o + f2) + (81 + B3) ufp + ¢, for team D.

IV.7 Schedule Model

Calendar-Weeks = So+5,ufp + f21+ f3lufp + e.
o I=0 : Calendar-Weeks = §y + Siufp + ¢, for teams A and B

« I=1 : Calendar-Weeks = (9o+) + (B1+ B3) ufp + ¢, for team D.

Several statistics were calculated from the data and compared to the criteria in the following sections.

2

IVS F-Ratio

The risk of a Type I error was controlled at a significance level of 0.10 for the F tests.

« Ho: Pr=pr=p=0
« Ha: not all parameters are zero.

Critical Value: The critical value for the F statistic is F(a=0.10,p-1,n-p).
Decision Rule:

o If F* < Fyi then do not reject the null hypothesis.

e If F' > Foy then reject the null.

IV9 Parameters

The risk of a Type 1 error was controlled at a significance level of 0.30 for the t tests.

Ho: fy =0,and Ha: 8 <> 0

Ho: f, =0,and Ha: 82 <>0

Ho: f3 =0,and Ha: f3<>0
Critical Value:
The critical value for the t statistic is t(a=0.30,n-p).

Decision Rule:

If t°l € ti then do not reject the null hypothesis.

If k°I > toi then reject the null.

Once a lincar model was developed, its specification was assessed. Because of the small number
of observations it was not practical to test for heteroscedasticity.

IV.10 Model Specification

A plot of residuals against the independent variable was examined for each model. The nonlinearity
of a mode! was checked by visually inspecting this residual plot for patterns such as the hump in Figure
S, or perhaps a 'U’ shape.

™
-1 ¢ °
™

2] o

Figure 5. Residual plot against independent variable
IV.11 Distribution of error terms

The assumption of the regression model is that the emror terms are normally distributed with a
constant variance. With a very small data set it is very difficult to test for these assumptions. The
nomality of the error terms was evaluated by plotting the residuals from each model as a histogram. If
the histogram was reasonably symmetrical, residuals were assumed t0 be normal.

IV.12 Outliers

With respect to X:

The hat matrix statistic was used 10 detect outliers with respect to the independent variable. The
SAS PROC REG computes the hat matrix, which expresses fitted values as a linear combination of the
dependent variables using the elements of the hat matrix H = X(X'X)~*X’. The diagonal elements
of the hat matrix (hy) are called leverage values. A leverage value indicates whether the i-th case is
distant from the center of all independent variable observations. The leverage is considered large if
hi >2xh, where B = 2, 50 hy > 32 indicates an outlier (21:395-396).

With respect 10 Y:

The SAS PROC REG provides studentized deleted residuals, which were analyzed o detect outliers
with respect to the dependent variable. Studentized deleted residuals with absolute valwes > t(a,n-p-1),
were considered extreme outliers at a level of significance of a=0.05.

31

IV.13 Infiuential Outliers

The next step is to ascertain the influence of outlying observations, using the statistic DFFITS,
provided by SAS PROC REG. The DF stands for difference, and DFFITS is the difference between:
o the fitted value for the i-th case when all n cases are used in fitting the regression function and
* the fitted value for the i-th case obtained when the i-th case is omitted in fitting the regression
function.

It is standardized so that the value (DFFITS); for the i-th data point represents roughly the number
of estimated standard deviations that the fitted value changes when the i-th case is removed from the data
set (21:401):

Y; - Yii)

(DFFITS), = (14)

If the influence statistics exceed established cutoff values, further investigation is warranted. For
small data sets, the observation is considered influential if DFFITS > 1. If observations tested as influential,
an in-depth analysis was performed to determine if the outlier was the result of measurement error or some
other distortion, otherwise a cursory analysis was done.

When a linear regression model is fitted to a data set with a small number of observations

and an outlier is present, the fitted regression may be so distorted by the outlier that the

residual plot suggests a lack of fit of the linear regression model in addition to flagging the
outlier (21:122-123).

IV.14 Collinearity

Collinearity is a problem arising from two or mare independent variables being highly correlated with
cach other, and are coincidentally explaining the same total sum of the squares. "The overall question when
testing for collinearity is: what is the significance of the relations among the predictors?” (27:37) When
predictors are correlated, the regression coefficient of any predictor depends on which other predictors
are included in the model, and which are left out. Four key questions that can be answered easily if
predictors are uncorrelated:

1. What is the relative impartance of the effects of different predictor variables ?
2. What is the magnitude of the effect of a given predictor on the response variable ?

32

3. Can we drop one or more prediciors without significantly affecting the explanatory power of the
presumed model ?
4. Should any other predictors be included in our model ? (27:37)

Condition numbers, tolerance (TOL), and R? were examined for indications of collinearity. There
are actually two measures of R2. The more common one is in the ANOVA table and it is based on the
dependent variable Y as a function of the independent variables, or Y = f(X, X2, X3, X4), and it will be
denoted as R} 5. For the purposes of collinearity diagnosis, another coefficient of determination is used
which is based on the independent variable in question being a function of the other independent variables,
or X; = f(X3,Xs, Xa), and it will be denoted as RZ.

Collinearity and tolerance diagnostics examined indicators of correlation among independent vari-
ables, using the SAS PROC REG options TOL and COLLINOINT (collinearity with no intercept column
in the design matrix). Collinearity exists if a condition number is greater than one. If the comdition
sumber > 10, then the model may be adversely affected by collinearity. The TOL option requests the
tolerance values for the parameter estimates based on R%. With TOL = 1 — R%, a TOL < 0.10 may
indicate that collinearity i influencing the least square cstimates. The coeficient of determination from
the ANOVA table, R ., was compared against R% = 1 — TOL. If R3 , < R2, then collinearity was
determined 10 be present.

IV.1S Prediction Intervals

A new observation of work-hours or calendar-weeks corresponding to a given level of function
points is viewed as the result of a new trial, independent of the trials on which the regression analysis is
based. Prediction of a new observation is subject to:

« variation in possible locations of the distribution of work-hours or calendar-weeks, and
o variation within the probebility distribution of work-hours or calendar-weeks (21:81).

Since the truc mean response is unknown, with a=0.20 the point estimator Y, will be used ©

construct a prediction interval:

?ll ~taa-p X i(eew) <Y< ?h +tam-p X 5Yu(eem) (15)

33

IV.16 Summary

Data was collected and is displayed in Appendix A along with descriptive statistics from SAS
PROCs CHART and REG. The programmers’ effort and schedule responses to a given level of support
were modeled with indicator variables. Afler an assessment was made of the model specification, each
model was tested. Then a final effort and schedule model was chosen and assessed.

V. Descriptive

The observations lisied in Appendix A on page S8 were collected from all personnel availabie ©
participate in the research. In addition to the enlisted programmer turnovers, the SCV software support
environment transitioned (0 a new contractor organization during this data collection. The previous support
contract was terminated and 2 new company began supporting the AFIT Oracle baseline at about the time
data collection began. As a consequence, Oracle database support activity was below normal throughout
the data collection period. The data include Mark 11 function points supported by a particular Software
Enhancement Request and the number of work hours expended by the tcam towards coding and testing
the SER during a period of calendar-weeks. The data was collected per programming team, per project.
Twelve observations were collected from AFIT/SCV personnel during the period April through June 1992
and are summarized in Table 9 in Appendix A on page 58. Three of the observations were for icams
comprised of two enlisted programmers, and nine were for individuals. Three of the observations were
for a single contractor, and the rest were for enlisted programmers. Five were for SQL*Forms support
and seven for SQL*Reports. A cursory inspection of the data showed some anomalies in the schedule
observations. Team C appeared 10 have a consistently higher response to a givea level of function points
than the other icams. The observations are considered accurate because the data collection was carefully
conducted. The significant difference in the tcam C response can be aitributed to the fact that team C was
interrupted frequently during period of time when the new company was seuling into the SCV environment.
These unique interruptions are special causes of variation and are not likely to recur. The team C schedule
response will be deleted for the purpose of building a schedule model. The effor? observations for team C
will not be deleted because in spite of the interruptions, the applied effort was not unusual.

V2 Regression

The SAS procedure 'REG’ was used %0 test the models for predicting effort in work-hours and
schedule in calendar-weeks based on the number of function points supported. Based on preliminary
analysis, an indicator varisble was introduced for quantifying the two cases as described in Chapter Four.
The indicator variable (T) takes on the value of one for the cbservations of team D, and zer0 otherwise.

35

V3 Effort Model

V3.1 Descriptive Statistics

There were 12 observations used o build this model. The effort model describes the relationship
between the predicior level of function points and the effort response in work-hours. Most of the
observations are at a level of 10 function points or less as shown in the histogram in Appendix A on
page 58. The scatter plot on page 60 highlights the preponderance of data at 10 function points or less.
There is a generally linear appearance 10 the relationship between function points and wark-hours, but with
only two observations greater than 10 function points the possibility of a nonlinear relationship exists. For
the purposes of this research a lincar relationship is assumed.

V.3.2 Indicator Variables

The values of the indicator variables are:
« I =0 if team A, B, or C, (single programmers).

o I =1 if eam D (two programmers).

MODEL : Work Hours = 0.538052 + 1.992678 x ufp — 10.814188 x I + 2.175083 x Iufp (16)

Team A, B, C : WorkHours = 0.538052 4 1.992678 x ufp an
Team D : WorkHours = -10.276136 + 4.167761 x ufp (18)
200 hrs 200 hrs
50 fp ofp
Team A,B,C Team D

Figure 6. Effort Model Regression Lines

V3.3 Coefficient of Determination

In Appendix B.1 on page 62 the R? value for this model was 0.9759, which indicates that 97.6
percent of the estimating error when the estimate is based on the mean response is explained by the
relationship between hours and function points.

V3.4 F-Ratio

Critical Value: The critical value for the F statistic is F(a=0.10,3,8)=2.92 (21:636).

Decision: The F* value in the ANOVA table in Appendix B is 108.136 which is greater than 2.92,
so reject the null hypothesis.

Claim: The probability of obtaining an F-ratio greater than 108.136 if hours was not a function of
UFP is less than 0.0001. The relationship appears to be very significant.

V.3.5 Parameter Tests
Critical Value: The critical value for the t statistic is t(a=0.30,8)=1.108 (21:630).

Decision: The values of the t-statistics and p-values for the parameters from the ANOVA table, and
the decisions for each parameter are summarized in Table 5. The least significant regression coefficient

Table §

Effort Model Parameter Tests

TERM PARAMETER | t STATISTIC p VALUE DECISION
ufp P 11688 0.0001 Reject H,
I P2 1.545 0.1609 Reject H,
Iufp i) 5818 0.0004 Reject H,

was §, which was significant at the 0.16 level of confidence which exceeds the criterion value of 0.30

by a comfortable margin.

37

V3.6 Model Specification
Residual plots against the independent variables in Appendix B.2 on page 63 did not reveal any
pattemns that would indicate a nonlincar relationship.

V.3.7 Distribution of the Error Terms

The error distribution for the effort model in Appendix B.2 shows some skewness 10 the right. With
only 12 observations, however, it is not centain whether or not the error terms are normally distributed.
For this model a normal distribution is assumed.

V3.8 Outliers

The criterion value for identifying outliers with respect t0 X for this model is 2 = 2X4 = 0.75.
From Appendix B.3, observations threc and nine had leverage values of 0.97612 and 0.99824 respectively,
exceeding the criteria. These observations have the two largest function point values, 50.62 and 32.36
respectively. The next largest observation had 9.8 function points.

The criterion value for identifying outliers with respect to Y using RSTUDENT for this model
was Y(a=0.05, 7) = 2.365 (21:630). Only observation six exceeds this criterion with a value of 2.40519.
Observation six had only 1.92 function points but yet took 17.8 hours to complete This was a large number
of hours for the small number of function points. The next largest RSTUDENT was observation three
with only 1.4447, which is not a significant value.

V3.9 Influential Outliers

The outliers examined for influence are three, six, and nine. From Appendix B.3, observations three
and nine had DFFITS values much greater than the criterion value of one (9.2372 and 31.9071 respectively).
These were the two observations identified as extreme outliers with respect 10 X and observations three and
nine have the two highest ufp counts. If they were © be removed from the data, the estimating equation
would change significantly. Since the software size measurement in function points was exact and any
effort measurement error was likely neglible, observations three and nine were not removed for building
the model. Observation six, the outlier with respect to Y has a DFFITS value close 0 one (0.9597), but
does not appear 10 be an influential outlier, and it is a valid although perhaps rare observation. No valid
reason was found for removing any of the outliers,

38

L S

V.3.10 Collinearity

In Appendix B.3, the largest condition number was 2.65931, which is significantly less than the
criterion value of 10. The smallest tolerance value was 0.4371 for JUFP. This means that when regressing
IUFP against the remaining independent variables in the model, the R% would be 0.5629. This is not a
large value, considering the R} for the model is 0.9759. Collinearity does not appear to be a problem
in this model.

V.3.11 Prediction Intervals

The prediction intervals for teams A, B, C, and D are listed in Appendix B.4 on page 65. Most
of the predicted values exceeded the actual values. The prediction for observation nine was equal to the
actual value of 125 work-hours. Observation nine at a level of 32.36 function points is predicted to require
125.4 work-hours plus or minus 12 work-hours, 80 percent of the time. For observation three, the effort
response (o a level of 50.62 function points was predicted to be 101.4 plus or minus 13.9 work-hours, 80
percent of the time. The prediction for the influential observation three was the next best at 101 work-hours
compared to the actual 103 work-hours. The next best was observation 11 at 4 work-hours predicted for
1.7 function points with 3.6 work-hours actually observed. Predictions for levels of function points at
observations one, five, and 10 were also acceptable. Observation six which happens to have a very large
residual value at 13.4 had an actual value outside of the prediction interval.

The relationship between actual effort response and predicted is plotted in Figure 11 on page 6S.
It shows many close predictions at low levels of function points and the two close predictions out at the
influential points.

V3.12 Closing

In spite of the small data set, the effort model seems to predict rather well up to 50 function points.
The indicator variables produce a two-member team model that show an effort response at a rate slightly
more than twice that for the onc-member model. This seems to imply that there is inefficiency associated
with two programmers collaborating on a project.

‘This effort model can be used to estimate the effort response up to 50 function points. However, this
range includes a gap from 10 to 32 function points that is interpolated by the model, with the possibility

39

that a nonlinear relationship exists in this interpolated region. Additional data collection in this range will
reveal the certainty of model.

V4 Schedule Model One

V4.1 Descriptive Statistics

Afier deleting three observations for team C, there were nine observations used to build this model,
and are listed in Appendix A on page 58. This schedule model describes the relationship between the
predictor level of function points and the schedule response in calendar weeks. Indicator variables were
used to differentiate between single and two-programmer efforts.

As with the effort model, most of the function points are at a level less than 10 with two observations
above 10. The histogram in Appendix A.3 shows that the distribution of weeks is somewhat different than
hours. Of the nine observations there are six that are less than one week and three greater than three
weeks. The two highest values of weeks correspond to the two highest function point levels. The second
highest Jevel of function points required the highest response at four calendar-weeks. Observation one has
a schedule response of threc weeks for only 3.58 function points, because the programmer eacountered
difficulties scheduling testing with the user.

Looking at the scatter plot in Appendix A.3 without observation one for tcam A at three weeks
depicts a relationship similar to the effort model, but with observation one it looks almost nonlinear. For
the purpose of this research a linear relationship is assumed.

V4.2 Indicator Variables
o I =0 if eam A or B (single programmer).
e I = 1 if team D (dual programmers).

MODEL: CalendarWeeks = 0.987992 + 0.038427 x ufp — 1.142614 x I + 0.089399 x Iufp (19)
Team A, B : CalendarWeeks = 0.987992 + 0.038427 x ufp (20)

Team D : CalendarWeeks = —0.154622 + 0.127826 x ufp (21)

40

Swk Swk

50 fp 50 fp
Team A.B Team D

Figure 7. Schedule Model One Regression Lines

V4.3 Coefficient of Determination

In Appendix C on page 66, the R} , for this model was 0.6894, which indicates that 68.9 percent
of the estimating ermor when the estimate is based on the mean response is explained by the relationship
between weeks and function points.

V4.4 F-Ratio

Critical Value: The critical value for the F statistic is F(a=0.10,3,5)=3.62 (21:634).

Decision: The F* value in the ANOVA table in Appendix C is 3.7 which is just greater than 3.62,
30 reject the null hypothesis.

Claim: The probability of obtaining an F-ratio greater than 3.7 if hours was not a function of UFP
is less than 0.0965. The relationship appears to be significant.

V4.5 Parameter Tests
Critical Value: The critical value for the t statistic is t(a=0.30,5)=1.156 (21:630)

Decision: The values of the t-statistics and p-values for the parameters from the ANOVA table, and
the decisions for each parameter are summarized in Table 6. The least significant regression coefficient was

41

Table 6

Schedule Model One Parameter Tests

TERM PARAMETER |t STATISTIC | p VALUE DECISION
ufp B 1616 0.1671 Reject H,
I B2 1.168 0.2954 Reject H,
Tufp B 1.788 0.1337 | Reject H

B2 which was significant at the 0.295 level of confidence which barely exceeds the criterion value of 0.30.

V4.6 Model Specification

Residual plots against the independent variables in Appendix C.2 on page 67, did not reveal any
patterns that would indicate a nonlinear relationship.

V4.7 Distribution of the Error Terms

The error distribution plotted on the same page for the schedule model is skewed right, but with
only nine observations it is difficult to ascertain the error distribution. For the purposes of this research

a normal error distribution is assumed.

V4.8 Outliers

The criterion value for identifying outliers with respect to X for this model is 22 = X3 = 0.89.
In Appendix C.3 on page 68, observations three and nine had leverage values of 0.98297 and 0.99824
respectively, exceeding the criteria. These observations have the two largest function point values, 50.62
and 32.36 respectively. The next largest observation had 9.8 function points.

The criterion value for evaluating outliers with respect to Y using RSTUDENT for this model was
t(a=0.05, 7) = 2.365. Only observation one exceeds this criterion with a value of 5.47349. Observation
one had only 3.58 function points but yet took 3 weeks to complete. This was a large number of weeks
for the small number of function points. The next largest RSTUDENT was observation five with only
1.047, which is not & significant value.

42

V4.9 Influential Outliers

The outliers examined for influence are one, three, and nine. In Appendix C.3, observations
one, three, and nine had DFFITS values much greater than one (2.829, 3.557, and 9.369 respectively).
Observations three and nine were identified as extreme outliers with respect to X. If they were to be
removed from the data, the estimating equation would change significantly. Observations three and nine
have the two highest function point counts. Any effort measurement error was likely neglible and the
function point count was exact. Observations three and nine were not removed for building the model.
Observation one, the outlier with respect to Y, has a high icsponse to a low level of function points because
the programmer encountered difficulties in scheduling testing with the users, so it is valid and will not be
removed. No valid reason was found for removing any of the outliers.

V4.10 Collinearity

In Appendix C.3, the largest condition number was 2.59989, which is significantly less than the
criterion value of 10. The smallest tolerance value was 0.4493 for TUFP. This means that when regressing
IUFP against the remaining independent variables in the model, the R would be 0.5517. Since the
R} x for the model is 0.6894 which is larger than 0.5517, collincarity does not appear to be a problem
in this model.

V4.11 Prediction Intervals

The 80 percent prediction intervals for teams A, B, and D are listed in Appendix C.4 on page
69. About as many of the predicted values were higher than the actual values as they were lower. The
prediction for the influential observations three and nine were very close, as well as observation six. The
prediction interval for observation three seemed somewhat wide ranging from 1.1 to 4.8 weeks for 50.62
function points. The actual value of observation one, which encountered test schedule difficulties, exceeded
the upper bound of the prediction interval. The other observations were in the intervals but all observations
except three and nine had negative lower bounds on the prediction interval.

The relationship between actual schedule response and predicted is plotted in Figure 12 on page
69. It shows many close predictions at low levels of function points, and the two influential points are
somewhat close to the predicted values.

43

V4.12 Closing

Even with a small data set, the schedule model seems to predict fairly well for values of up to
50 function points. The indicator variables produce a two-member tcam model that show a schedule
response at a rate slightly more than three times that for the one-member model. This indicates that there
is inefficiency associated with two programmers collaborating on a project.

‘This model can be used to estimate the schedule response up to 50 function points. However, this
range includes a gap from 10 to 32 function points that is interpolated by the model, with the possibility
that a nonlinear relationship exists in this interpolated region. Additional data collection in this range will
reveal the certainty of model.

Since the 'I' term in Schedule Model One was the Jeast significant at a 0.295 level of confidence,
the next model will examine the relationship without the 'I' term.

V.5 Schedule Model 2

V.5.1 Descriptive Statistics

This schedule modet describes the relationship between the predictor level of function points and the
schedule response in calendar weeks. Only three parameters are estimated in this model, the coefficients
of ufp and Iufp, and the intercept. The least significant term, °I', in Schedule Model One, was dropped
for this model.

V.5.2 Indicator Variables

The indicator variables assume the values:
e I =0 if team A or B (single programmer).
e | = 1 if team D (dual programmers).

MODEL : CalendarWeeks = 0.68226 + 0.046844 x ufp + 0.049292 x Tufp @)
Team A, B : CalendarWeeks = 0.68226 + 0.046844 x ufp 3)
Team D : CalendarWeeks = 0.68226 + 0.096136 x ufp 24)

44

Swk Swk

50 fp 50 fp
Team A, B Team D

Figure 8. Schedule Model Two Regression Lines

V.5.3 Coefficient of Determination

In Appendix D on page 70, the R} » for this model was 0.6046, which indicates that 60.5 percent
of the estimating error when the estimate is based on the mean response is explained by the relationship
between calendar-weeks and function points, and this is less than Schedule Model One.

V.54 F-Ratio
The critical value for the F statistic is F(a=0.10, 2, 6)=346 (21:634).

Decision: The F* value in the ANOVA table in Appendix D is 4.588 which is greater than 3.46
30 reject the null hypothesis.

Claim: The probebility of obtaining an F-ratio greater than 4.588 if weeks was not a function of
UFP is less than 0.0618. The relationship appears to be significant.

V.5.5 Parameter Tests
Critical Value: The critical value for the t statistic is t(a=0.30,6)=1.134 (21:630)

Decision: The values of the t-statistics and p-values for the parameters from the ANOVA table, and
the decisions for each parameter are summarized in Table 7:

45

Table 7

Schedule Model Two Parameter Tests

TERM PARAMETER | t STATISTIC p VALUE DECISION
ufp B 2.007 0.0916 Reject H,
Tufp B2 1317 02358 Reject Hy

The least significant regression coefficient was 5, which was significant at the 02358 level of
confidence which exceeds the criterion value of 0.30.

V5.6 Model Specification

Residual plots against the independent variables in Appendix D.2 on page 71 did not reveal any
patterns that would indicate a nonlinear relationship.

V.S5.7 Distribution of the Error Terms

The histogram on the same page shows a right skew due to observation one, which encountered test
schedule differences. With only nine observations it is difficult to tell if the errors are normally distributed.
A normal distribution is assumed for the purposes of this model.

V5.8 Outliers

The criterion value for identifying outliers with respect 0 X for this model would be 2 =
X3 = 0.67. From Appendix D.3, observations threc and nine had leverage values of 0.9725 and 09724
respectively, exceeding the criteria. These observations have the two largest function point values, 50.62
and 32.36 respectively.

The criterion value for identifying outliers with respect to Y for this model using RSTUDENT for
this model was t(a=0.05, 5) = 2.571 (21:630). Only observation one exceeds this criterion. Obeervation
one had 3.58 function points but yet took three weeks to complete. This was a large number of weeks for
the small number of function points, due to testing difficulties. The next largest RSTUDENT was only
1.26, not a significant value.

V5.9 Influential Outliers

The outliers examined for influence are one, three, and nine. Observations one, three, and nine had
DFFITS values much greater than one (2.83, 3.56, and 9.37 respectively). Observations three and nine
were identified as an extreme outliers with respect 10 X. If they were to be removed from the data, the
estimating equation would change significantly. Observation one, the outlier with respect 10 Y, is valid
and was not removed. Novﬂidmmwf&mdfumovingmyofﬂnouﬂies.

V.5.10 Collinearity

In Appendix D.3 the largest condition number was 1.5, which is significantly less than the criterion
value of 10. Both tolerance values are 0.85, 5o if Iufp were regressed against ufp, the R% would be 0.15.
Since the R2. for the model is 0.60 which is much larger than 0.15, collinearity does not appear o be
a problem in this model.

VS5.11 Prediction Intervals

The prediction intervals for teams A, B, and D are listed in Appendix D.4 on page 73. Most of
the predictions were higher than actual values. The predictions for the influential points three and nine
were very close, as was observation two. The actual values for observations four, five, six, and cight were
within their predicted intervals, aithough the lower end of their intervals were negative. The actual value of
observation one was 3.0 calendar-weeks and was beyond the intervals upper bound at 2.3 calendar-weeks.

The relationship between actual schedule response and predicted is plotted in Figure 13 on page 73.
It shows several close predicted schedule responses at low levels of function points with somewhat worse
predictions than Schedule Model One in Figure 12 on page 69 at the influential points.

Vs.12 Cbsing

The indicator variables produce a two-member team model that show an effort response at a rate
slightly more than three times that for the onc-member model. This indicates that there is schedule
incfficiency associated with two programmers collaborating on a project as opposed 10 one programmer
working on the project when an equal intercept model is used. This second schedule model doesn’t seem
to predict as well as Schedule Model One for one or two-member teams ap to 50 function points. This
range includes a gap from 10 to 32 function points that is interpolated by the model, with the possibility

47

that a nonlinear relationship exists in this interpolated region. Additional data collection in this range will
reveal the certainty of model.

V6 Summary

In this chapter the software support at a givea level of function points was related to the effort and
schednﬂemmideﬁm The effort model was developed with all 12 observations, but the two
schedule models were developed with nine observations. Three schedule observations were deleted because
they were a result of special causes of variation. Most of the responses are at a level of 10 function points
or less. The two observations at 32 and 50 function points were most influential and resulted in a model
that interpolates the responses to requests for software support in the range of 10 10 32 function points.

‘The use of indicator variables revealed apparent effort and schedule inefficiency whea two program-
mers work on a project as opposed (o one. The inefficiency was more pronounced in the schedule models
than the effort models. The prediction intervals showed a tendency of the models 10 overestimate most of
the responses to observed levels of function points. The effort model appears to be very significant and
predicts reasonably well. Most of the actual values of responses were within the 80 percent prediction
interval. Schedule Model One predicts fairly well and better than the second model. Improved schedule
estimation will require more data first of all, and most likely additional predictors. The small number of
observations prevented a conclusive determination of the distribution of ervor terms. With the exception
of the three schedule observations that were deleted, the remaining observations were subject ©o typical
variations within the population of interest. Schedule Model One will be used w0 predict schedule for teams
A, B, and D because it is a more significant relationship than Schedule Model Two.

VL Conclusion

A novel technique has been developed for directly estimating the effort and schedule required for
Oracle database software support using Mark II function points as a predictor. The characterization of the
size of the software support in terms of function points was easily and unambiguously quantified before
coding. The relationship between the observed effort and schedule responses and the level of function
points was significant and predictable.

VL1 Measurement Results

VI.1.1 Sizing

The unambiguous mapping of Mark II function points 0 Oracle components allowed very casy
estimation of the size of the software support required before coding. Afier analysis and design were
compieted, the programmers were able t0 exactly quantify how many inputs, outputs, and entities would
be added, changed, or deleted during the software support.

VI.1.2 Effort and Schedule

The measurement of effart in work-hours was straightforward. The programmers worked on the
projects with a varying number of interruptions. The effort measurements were accurale 10 one teath of
a hour.

The measurements of schedule in calendar-weeks tended ©0 vary significantly more than the
work-hours, due mainly to interruptions from emergent demands upon the programmers. The schedule
measurements were accurate 10 onc tenth of a five-day week, ar about half of a day.

V12 Estimatiag Results

Vi2.1 Effon
The relationship between a given level of function points and the effort response was found to

be very significant, with an apparent inefficiency reflected in the two-person response. The difference is
evident in the ufp coefficient for the seam D model that is more than twice that for the one-programmer
model. The effort model 10 within two digits of precision is:

Team :A, B, C: WorkHours = 0.54+ 2.0 x ufp 25)

49

Team D : WorkHours = -10+4.2 x ufp (26)

VI22 Schedule
The relationship between a given level of function points and the schedule response was found to be
significant, with an apparent inefficiency reflected in the two-person response. The difference is evident in
the ufp coeflicient for the two-programmer model that is more than three times that for the one-programmer
model. The schedule model 1o within two digits of precision is:
Team A, B : CalendarWeeks = 0.99 + 0.038 x ufp @
Team D : CalendarWeeks = -0.15+ 0.13 x ufp (28)
The validity of predictions using these models will depend upon whether basic conditions in the
future are similar to those during the period of observation used to build this model. Also, since the model
is based on observations ranging up 0 50 function points, predictions above that level are less certain. The
models built from a small data set and were very dependent upon the influential points. Most observations
were at size levels less than 10 function points. The influential points were at much higher levels leaving
a gap that is interpolated by the model.

VI3 Recommendations

Vi.3.1 Measurement

Regarding the data collection, a point that needs to be made is that the effort and schedule models
predict the work-hours calendar-weeks that will be reporied as the response 0 the size level measured
in function points. This is not to imply that a programmer would deliberately provide erronecus data,
but rather that the programmers are busy supporting the mission, and are likely 10 spend as little time
as possible keeping a log of work-hours spent on a project. As mentioned eartier, the level of support
activity was Jower than normal, which mitigated any inclination 10 sacrifice data collection in favor of
meeting a schedule and resulted in the excellent quality of data for this rescarch. However, the realities
of software support in a demanding environment with tight deadlines will certainly threaten the quality

S0

of data collected, because no matter how much the managers claim that collecting data is of paramount
importance, the programmers know that the botiom line is delivering the software.

mmd&mdmmmmmdmmW'sm
analysis and design. An alternative would be to use information available after onaly the analysis is complete
but not the design. With just the analysis completed, it would be unreasonable t0 ask a programmer how
many trigger-steps will be added, changed, or deleted, but not unreasonabie 10 ask how many table-based
blocks will be affected by a software support request. This early count of entities could be used to ¢ither
estimate the eventual number of inputs and outputs that will be affected, or to directly estimate effort and
schedule from the number of additions, changes, and deletions of entities. Also, since only one project
had more than one transaction invoived, a potential factor could be the number of transactions supported
in a project. This count would be especially significant as a predictor of effort and schedule with increased
testing due to the interactions between many transactions. The technical complexity adjustment (TCA)
was held constant for all of the projects. There may be enough differences within the SCV eavironment
to justify varying the TCA.

The mappings from Oracle components o Mark II function points seem t0 characterize the
functionality very well, but may not be perfect. Specifically, SQL*Forms and SQL*Reports are different
software development tools. The assumption is that there is a high correlation between the mappings of
each language’s components to Mark II function points. With such a small study, it is not feasible to test
this assumption. A possibility for further rescarch would be to define many competing mapping strasegies,
and collect data on all projects using all the mappings. Then for SQL*Forms and SQL*Reports projects
that required the same amount of effort or schedule, find out which mapping strategies count them at the
same level of function points. This would enhance the usefulness of the weights.

In this research, the size was weighted using Symons® industry average set. The size of the software
support could be tabulated by transactions, inputs, entities, and outputs that were added, changed, or deletod
as shown in Table 8. A possibility for future research would be 10 run a maltiple regression on the inputs,

51

Table 8

Maultiple Factors

Additions | Changes | Deletions | TOTAL | SCV

Weights

Transactions Wt
Inputs Wi
Entitics W
Outputs Wo
TOTAL

ACD Wa Wc Wp

Weights

entities, and outputs that would provide a set of weights local to SCV. Another possibility would be to
perform a multiple regression on the count of weighted additions, changes, and deletions (ACD).

The sizes of the projects in this research were sufficiently smail that it was not difficult to estimate
the exact number of function points that would be supported. But with larger projects, the difference
in estimated and actual function points will become significant. A possible remedy is 10 have automatic
change detection using a before and after function point count. The data collection program in Appendix
H currently provides sizing by analogy, and with some modifications could also be used to track changes
1o the baseline of function points through time. The program could be elevated from the status of a small
prototype t0 an operational sizing and estimating tool using Pro*Ada, an Oracle product that trovides
database binding to an Ada program (22:50-51). Pro*Ada would allow direct access 10 the database from
the data collection program. Another consideration is to revisit the possibility of using SQL *Reports as the
most convenient aspect of using the data dictionary to count function points is that the Oracle components
that are mapped to the function points have names. These names could be viewed as the software baseline,
which means that the entire baseline could be viewed in terms of named function points as in Appendix
F on page 75.

Currently SCV does not make use of the more advanced capability of SQL*Forms version 3.0 to

52

imbed procedures into the forms. Should that capability be tapped, the current method of counting function
points would likely lose some of the power 10 explain variation from the effort and schedule mean response
to a given level of function points. One possibility would be to include an algorithmic parameter o the
three defined by Symons, in the same manner that Jones added a sixth parameter to Albrecht’s original
five parameters. A fourth parameter added to Mark II function points to measure algorithmic complexity
would create a method sufficiently different that it would wamant the designation Mark III.

Since this study was based on relational database software support with a 4GL, it was very easy 0
adapt Mark 11 function points to the software support. With a 3GL like COBOL it is not so convenient and
would probably entail the accumulation of a lot of rules like Dreger's and Jones®, unless the development
methodology was focused on inputs, outputs, and entities. This would be easier if a technigue known as
Hierarchical Input Process Output (HIPO) design was prevalent in the organization, from design, through
configuration management, to documentation. Instead of programmers arbitrarily creating modules in an
ad hoc manner, but rather designed, documented, and managed the modules as a configuration of Mark II
function points, a 3GL project might be as easy (o size as the projects in this study. If an organization
had both a 3GL and SQL*Forms 3.0, the Mark II function points counting mles they establish for the
3GL could also be applied to any imbedded procedures in SQL*Forms. Any of these suggested changes
should be evaluated for their usefulness, and a possibility is using Boehm®s 10 criteria for evaluating a
software cost model: definition, fidelity, objectivity, constructiveness, detail, stability, scope, ease of use,
prospectiveness, and parsimony (6:476).

V1.3.2 Estimating

The single predictor was created by using Symons® Industry Average Set of weights. This limits
the potential explanatory power in multiple predictors tabulating the number of additions, changes, and
deletions of function points. As a case in point, the two influential observations at 32 and SO function
points appear to indicate a negative relationship with effort when plotted alone as in Figure 9 When the

53

(/7S "I’II”I

IIII’IIIIII
(/[/S LSS/
(/S S/

([/L))

VOSSN

VOSSN

Figure 9. Influential Points

other observations are added along with the regression line as in Figure 10, it shows that the observations
arc valid although a couple of standard deviations out from the regression line at their levels. Upon closer
examination, the observation at 32 function points just happens (o be entirely changes, and the one at 50
function points is entirely additions. There is potential for gaining additional explanatory power from the
observations by performing a multiple regression based on three factors: additions, changes, and deletions

of function points.

V7.

Figure 10. All Observations

Another area lacking data is the response of teams of three, four, or more people. As team members
increase arithmetically, the lines of communication among them increase geometrically. It would be

54

interesting investigate Putnam’s assertion that the problem solving response of groups of four or mare
people are essentially the same (24:216).

Cusrently computer resource usage by individual is unknown because the accounting information
is not activated, and because users and programmers log on with a single group identification account. If
accounting information were available by team and project, it could be used to derive date and times to
free programmers from schedule data collection.

Humphrey outlined a method of using time series to compensate for a programmer’s leaming curve
and detect when the software development process has reached a stable state (17:203). A problem with
his method is that it is based on LOCs and invites its paradoxical effects on software economics. If
Humphrey's method were based on a truer measure of software such as function points, the process could
be brought under statistical control with a truer sense of continual improvement.

Ancther benefit of using function points is to study the effect of training. Several months of team
observations could be collected, then the training, followed by another run of observations. If the training
was effective it might show up as increased efficiency in supporting software requests.

The schedule response is less significantly related to function points than the effort response. This
is not surprising since by definition work-hours are only the hours spent working on a particular project,
while calendar weeks accumulate for as long as the programmer worke on the project, including whatever
interruptions delay the project. So, a team’s schedule response is likely 10 be dependent upon other factors
in addition to function points. One possibility is defining a factor that reliably characterizes a work order’s
true priarity to the organization. Said in another way, to explain additional variation, define a factor that
measures the likelihood of a project being preempted in favor of emergent demands upon the organization.
Bob Esterling created an elaborate set of metrics based on the interruptions that retard programmers’
productivity (13:164).

There is also a commercial software sizing and estimating product called Before You Leap (BYL)
that uses Mark II function points (33:177). It was not available for this research. It may be worth looking
into for adaptation to SCV'’s environment, since it is now clear that there is a significant relationship
between Mark II function points and effort and schedule, for the SCV environment. Another possibility is
to create a database at AFIT for collecting size, effort, and schedule measurements from many Oracle sites
throughout the Air Force. The inclusion of many sites as a study o follow this research would definitely
require that the environmental factors be added to the values collected. The benefit would be to crease a

55

software support measurement and estimating system tailored not only 0 Oracle systems, but 1 Air Force
applications and procedures as well.

VL4 Software Quality

Many textbooks vainly attempt to define software quality, but there are two books on quality
worth adapting to software: Robert Pirsig’s classic analysis of quality (23:100) and Dr Deming’s idea
of operational definitions (11:276-296). Both emphasize a thoughtful approach to quality based on a
precise understanding of functionality. Function points can provide a meaningful measure of function-based
software quality, that can not only provide a means of sizing and estimating software support required, but
can also take advantage of scientific methods of management that have been perfected in other disciplines.

In micro-economics for instance, a firm can minimize its losses by operating at a level where
marginal cost is equal to marginal revenue (14:259). This is also related to the concept of complementary
slackness in management science, and Barry Boehm described a similar method called marginal analysis
(6:209-210). In this research, effort and schedule regression lines were developed, and each line has a
slope, which is the marginal cost of supporting function points. The marginal cost in hours or wecks can be
converted into dollars. The problem is deriving marginal revenue in a government (or nonprofit) operation.

Revenues can be realized with a recent innovation in the DoD called Defense Business Operating
Fund, (DBOF). It is an attempt to enable government organizations to market their products within the
government, and actually receive revenue. In fact, one software organization at Gunter AFB, AL is
developing software and marketing it within the DoD (9:1). With this measure of revenue, it is possible to
derive margina! revenue for function points, allowing the organization % minimize its losses by operating
at a level of function points where marginal cost is equal to marginal revenue.

Even without the private sector’s convenient common denominator in the dollar, there are ways ©
achieve continual improvement of software quality based on function points. A simpie exampile might be
the number of LOCs per function point. A measure of quality might be the fewer LOCs per function point
the better. This of course may encourage poor programming practices that leads 0 error-prone software. A
more sophisticated definition of how to deliver software functions should be besed on a precise specification
of a programming style guide, as well as a means for scoring the compliance with the style guide.

With the additional information acquired by measuring software functionality in serms of function

56

points, managers can achieve greater control of the software support process through greater knowledge
of the conditioned responses of the process. As many authors have noted, we cannot manage what we

cannot measure!

QObservations
12 Total

Table 9
Summary of Team Observations

Appendix A. Observations
The SAS System

Government

2 Programmers
Observation

1

¢ AB: individual enlisted programmers
¢ D: team of two enlisted programmers (A and B)
OBS HRSCODE HRSTEST WKSCODE WKSTRST UFP TEAM I BOURS WEEKS IUFP

» C. individual contractor

oooszozso
31300100‘

'209"530
513“7‘15
1“ L) 2

CO0OO0O0OO0OrMwrn

L E NN R N-N-N-]

BONVvONT®D®Y
5"259253

39”53153

5‘0212125
101000001

5‘0‘1.1‘5
lozoooooz

000910510

132002021
N (4]

820030020

"1“5‘9“

NN O~OON

ooo
23‘

n o«
TNN

N K-]
O Nw

NN~
O N

* 10
* 11
* 12

58

* These ocbservations were used to develop the effort model, but
were deleted for the data set used to develop the schedule model.

A.1 Frequency Plots

ure Cum, Cum.
Midpoint Freq Freq Percent Percent
|
10 | SARARBABABACHCACIDAD 10 10 83.33 83.33
i
30 |*D 1 11 8.33 91.67
|
S0 I*A 1 12 8.33 100.00
2 4 6 8 10
Frequency
HOURS Cunm. Cum.
Midpoint Freq Freq Percent Pezcent
|
25 | *ASAXBYBYBACACACADAD 10 10 83.33 83.33
I
% | 0 10 0.00 83.33
|
125 |*a*D 2 12 16.67 100.00
e Tt Saa Atatn et 2
2 4 6 8 10
Frequency
WEEKS Cum. Cum.
Midpoint Freq Freq Perxcent Perxcent
|
0.75 | *RRAARNARPRRAAPERARBAXXADAAARD 6 6 50.00 $0.00
|
2.25 | #RaC 1 7 8.33 58.33
|
3.78 | ARRRARRRAQRRRACRARRCRARAD 5 12 41.67 100.00

DT WINPT WIS SES WSS W §

1 2 3 4 L] 6

Frequency

A2 Effort Scatter Plot

Plot of HOURS*UFP. Symbol is value of TRAM.

13]
(-]
<
Q
a 4
[(3]
(3]
(-4 [~ o o o o [(-]
(-3 []
mu s g 3 S .

0

 ©

NOTR: 2 obs hidden.

A3 Schedule Scatter Plot

Symbol is value of TEAM.

Plot of WEEKS*UFP.

—em e e e w e e e e e o = -

N
-

(]
L]

<
L]

”

.

~N

L)

<

-

L)

'y

R

Y

o

F ©

61

Appendix B.

B.1 ANOVA and Parameter Estimates

Model: H

Dependent Variable: HOURS

Brror
C Total

Root MNSE

Dep Mean
c.v.

Variable Dr

INTERCEP
ore

I

IurP

-

Effort Model

Analysis of Variance

Sum of
or Squarxes

18754.23281
462.48719
19216.72000

[l W

Mean
Square

6251.41094
57.81090

7.60335 R-square
25.80000 Adj R-sq

29.47034

Parameter Estimates

Parameter
Estimate

0.538052
1.992678
-10.814188
2.175083

Standard
Exzrox

2.97537603
0.17049057
6.99881712
0.37386872

62

F Value

108.136

0.9759
0.9669

T for HO:
Parameter=0

0.181
11.688
=1.545

5.818

Prob>¥

0.0001

Pxob > |T|

0.8610
0.0001
0.1609
0.0004

B2 Model Specification

Plot of YRESID*YHAT. Symbol is value of TEAM.

18 +
|
I B
|
I
10 +
|
|
] ¢
R |
e S+
s |
i I
d ! A
] |
a 0 +--C D
1 |
I CaA
I B
|
-5 +
|)]
{ D
|
| A
-10 +
0 20 40 60 80 100 120 140
Predicted Value of BOURS
YRESID Residual Cum. Cum.
Midpoint Freq Freq Percent Percent
|
-7.5 | RRRSARARRPANAA] 3 3 25.00 25.00
|
-2.5 | RRRAQANARARARRACHRARC 4 7 33.33 58.33
|
2.5 (Rdabede/ Nltds] 2 9 16.67 75.00
|
7.8 | sanRChran] 2 11 16.67 91.67
I
12.5 [Rdadedd | b § 12 8.33 100.00
1 2 3 4
Frequency

63

B3 Infiuential Outliers and Collinearity

OBS HAT RSTUD DFrIT8
1 0.12667 -0.24750 -0.0943
2 0.11133 -1.28667 -0.4554
3 0.97612 1.44470 9.2372
4 0.11877 -0.083556 -0.3067
L 0.12667 -0.43655 -0.1663
6 0.13734 2.40519 0.9597
7 0.47126 -1.33939 -1.2645
8 0.53050 1.33939 1.4237
9 0.99824 1.33939 31.%9071

10 0.14315 -0.23343 -0.0954
11 0.13866 -0.05374 -0.0216
12 0.12130 1.01425 0.3768
Variable DF Tolerance
INTERCEP b | .
ore 1 0.77740809
I b § 0.52453916
IUrpP 1 0.43714123

Collinearity Diagnostics (intercept adjusted)

Condition Var Prop Var Prop Var Prop
Mumber Eigenvalue Wumber UFP I Iur?

1 1.859%61 1.00000 0.0775 0.1002 0.1080
2 0.87743 1.45581 0.6358 0.1654 0.0029
3 0.26296 2.63931 0.2867 0.7344 0.8891

B4 Prediction Intervals

Table 10 shows the predicted response, upper, and lower bound of the 80 percent prediction interval.
The actual work-hours for each observation is in boldface relative 10 the predicted values and the bounds.

Table 10

80 Perceat Prediction Intervals for Effort Model

OBS Lower Predicted Upper
Actual Actual Actual
1 -34733 53 76718 18.8170
2 9.0102 112 20.0663 31124
3 87.4914 1014074 | 103 1153234
4 -0.1268 49 109797 22,0862
5 -34733 44 76718 18.8170
6 -6.8305 4.364 155585 178
7 0.4565 45 11.5629 22,6694
8 -6.5007 4.6444 113 15.7896
9 1134267 | 125 125.4262 137.4259
10 -83710 11 2.8496 14.0701
1 -1.1951 s 4.0053 152058
12 -13351 9.7841 17 20.9033
Plot of Predicted vs. Actual Effort
190
109
i ”0
.
S

84

Aomal

Figure 11. Effort Model Predicted vs Actuals

65

Appendix C. Schedule Model One

C.1 ANOVA sad Parameter Estimates

Model: WF

Dependant Variable: WEEKS

Brrorx
C Total

Variable DPF

g i s g
TRYEYE

Analysis of Variance

Sum of

or Squares
3 11.20229
5 5.04660
8 16.24889

Square

3.73410
1.00932

1.00465 R-square
1.51111 A3 R-aq

66.48415

¥ Value

3.700

0.6894
0.5031

Parameter Estimates

Parameter
Estimate

0.987992
0.038427
-1.142614
0.089399

Standard
EBrrorxr

0.50596367
0.02378450
0.97807916
0.04998601

T for EO:
Parameter=0

1.953
1.616
-1.168

1.788

Probor

Prob > |IT|

0.1083
0.1671
0.2954
0.1337

Model Specification

Plot of YRESID*YHAT. Symbol is value of TEAM.

|
|
2+
| A
|
|
|
R |
e 1+
[] i
i |
d |
u | D
a |
1 0+ B A D=
§
(D A
|
| B
!
-1+ B
{
0 1 2 3 4
Predicted Valua of WEEKS
YRESID Residual Cum. Cum.
Midpoint Freq Freq Percent Perxcent
|
-1.2 (Rbadaded) 1 1 11.11 11.11
|
-0.4 | FRARRpRERAPERAADASRE]) 4 5 44.44 55.56
|
0.4 | SRERpRERAPAERA]D 3 | 33.33 $8.09
|
1.2 i 0 s 0.00 88.89
|
2.0 (RA il 1 9 11.11 100.00
1 2 3 4
Frequency

C3 Infivential Outliers and Collinearity

oBS HAT RSTUD Dr1Ts
1 0.21083 5.47349 2.82908
2 0.17062 -0.36220 ~0.16428
3 0.98297 0.46822 3.55722
4 0.19586 ~-0.61188 -0.30197
S 0.21083 -1.04699 ~0.54116
6 0.22889 -0.06266 -0.03414
7 0.47126 -0.39329 -0.37130
8 0.53050 0.39329 0.41806
9 0.99824 0.39329 9.36903

Variable DF Tolerance
INTERCEP b § .

orp 1 0.77251197
b 4 1 0.52753464
IUrP 1 0.44932603

Collinearity Diagnostics (intercept adjusted)

Condition Var Prop Var Prop Var Prop
Number Eigenvalue Number UFP I pas 4

1 1.77089 1.00000 0.0630 0.1093 0.1240
2 0.96712 1.35318 0.5892 0.1428 0.0003
3 0.26199 2.59989 0.3478 0.7480 0.8757

CA4 Prediction Intervals

Table 11 shows the predicted response, upper, and lower bound of the 80 percent prediction interval.
‘The actual calendar-weeks for each observation is shown in boldface relative to the predicted values and
the bounds.

Table 11
80 Percent Prediction Intervals for Schedule Model One

OBS Lower Predicted Upper
Actual Actual Actual
1 -0.3786 1.1256 26297 30
2 -0.1176 1.0 1.3646 2.8467
3 1.0883 29332 30 4.7780
4 -0.3068 0.6 1.1893 2.6855
5 -0.3786 02 1.1256 26297
6 -0.4519 1.0 1.0618 25754
7 -0.9810 02 0.5152 20113
8 -1.2011 0.3030 06 1.8071
9 2.3968 39818 4.0 5.5669

Plot of Predicted vs Actual Schedule (1)

411 +

Figure 12. Schedule Model Two Predicted vs. Actual Schedule

Appendix D. Schedule Model Two

D.1 ANOVA and Parameter Estimates

Analysis of Variance

Sum of Mean
Source or Squares Square F Value Probd>r
Model 2 9.82482 4.91241 4.588 0.0618
Erzoxr 6 6.42407 1.07068
C Total 8 16.24889
Root MSE 1.03474 R-square 0.6046
Dep Mean 1.51111 Adj R-sq 0.4729
C.V. 68.47514
Parameter Estimates
Paramater Standard T for HO:
Variable DF Estimate Exrror Parameter=m(Pzodb > |T}
INTERCEP 1 0.682226 0.44597194 1.530 0.1770
ore 1 0.046844 0.02334585 2.007 0.0916
Ioure 1 0.049292 0.03741901 1.317 0.2358

70

D2 Model Speciication

Plot of YRESID*YHAT. Symbol is value of TEAM.

|
3+
{
|
l
i
| A
2+
|
R I
e |
s |
i [
d 1+
u |
a |
1 |
|
| B D
0 +-- A
| A
| B
{ D
| B
|
-1 + D
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Predicted Value of WEEKS
YRESID Residual Cum. Cum.
Midpoint Freq Freq Percent Percent
|
-1.2 Radabde o) 1 1 11.11 11.11
i
-0.4 ' RARKQARAIRRARANRPRAXRAPRRLA]D 5 6 £5.5%6 66.67
|
0.4 | ARRRBRARR]D 2 8 22.22 88.89
|
1.2 | 0 8 0.00 88.89
|
2.0 (Rdid) § b § 9 11.11 100.00

B o T TN B PR
1 2 3 4 L]

Frequency

7

D.3 Influential Outliers and Collinearity

OBS HAT RSTUD DFrITS
1 0.21083 5.47349 2.82908
2 0.17062 -0.36220 -0.16428
3 0.98297 0.46822 3.55722
4 0.19586 -0.61188 -0.30197
5 0.21083 -1.04699 -0.54116
6 0.22889 -0.06266 -0.03414
7 0.47126 -0.39329 -0.37130
8 0.53050 0.39329 0.41806
9 0.99824 0.39329 9.36903

Variable DrFr Tolerance
INTERCEP 1 .

ore 1 0.85055734
IurP 1 0.85055734

Collinearity Diagnostics (intercept adjusted)

Condition Var Prop Var Prop
Number ERigenvalue Number UFP IUrP

1 1.38658 1.00000 0.3067 0.3067
2 0.61342 1.50346 0.6933 0.6933

72

D4 Prediction Intervals

Table 12 shows the predicted response, upper, and lower bound of the 80 percent predictior: interval.
The actual calendar-weeks for each observation is shown in boldface relative to the predicted values and
the bounds.

Table 12
80 Percent Prediction Intervals for Schedule Model Two

OBS Lower Predicted Upper
Actual Actual Actual
1 -0.6542 0.8499 2.3541 30
2 -0.3408 10 1.1413 26234
3 1.2086 30 3.0535 4.8983
4 -0.5685 0.6 0.9277 24238
5 -0.6542 0.2 0.8499 23541
6 -0.7415 0.7722 1.0 22858
7 -0.3102 0.2 1.1860 2.6821
8 04T 0.6 1.0264 2.5305
9 2.2082 3.7932 4.0 5.3782

Plot of Predicted vs Actual Schedule (2)

311 +

181

a7

o Y) Y Y &
Actual

Figure 13. Schedule Model Two Predicted vs Actual

73

Appendix E. FGREP

E.l1 FP2RE

The text file FP2.RE contains the key strings for the file-oriented regular expression parser, FGREP,
to search for in a data dictionary report produced by an Oracle program form_docspt. PGREP is invoked by
the Digital Equipment Corp. Command Language file REDUCE.COM in the next section. The contents
of FP2RE are as follows:

TITLE:
TYPE:
STEP =
FIRLD
Block

E2 REDUCE.COM

The following DCL file prompts the analyst for information about a particular SER and invokes
FGREP to search for Oracle SQL*Forms components that are mapped to Mark II function points as defined
in Chapter Three, by the program listed in Appendix H on page 100.

$ FileFound = "*

$ FORM = "q"

$ SBR = "n"

$ Loop2:

$ inquire p2 "What is the SER§ (1 to 5 digits) ==> "
$ LoOP1:

$ inquire pl "Enter file name of .LIS file, without .LIS part m=> "
§ define sys$output ‘Pl’.£p2

§ fgrep -f £p2.xve 'Pl’.lis

$ deassign sys$output

$ zen 'P1’ . 1is 'P1’.'P2’

$ dir/size/date 'P1’'*

re FORM "Do you have another file ? (y/n) "

£ FORM . "y" then goto LOOP1

re "Do you have another SER ? (y/a) *
"y" then goto LOOP2

]
a3

fve

£

B
3

BHi

74

Appendix F. SQL*Forms Inputs, Entities, Outputs

The following listing is the result of REDUCE.COM scanning a data dictionary report and it
represents the portion of the SCV baseline from a8 SQL*Form (Mark II Transaction) called Admission.
Within the listing are the names of the function points. For instance towards the end of the listing,
one perticilar trigger step (Mark 11 input) can be uniquely distinguished from all the others in the entire
baseline by completly specifying its form, block, field, and trigger: ADMISSION, PERSON, SSAN,
KEY-PRVFLD, STEP 1.

TITLE: ADMISSION
TYPE: CHECK_MANNING_CODE_TRG
STEP = 1
TYPE: CLEAR DETAILS_TRG
STEP = 1
TYPE: KEY-CLRBLK

STEP = 1

TYPE: KEY-DELREC
STEP = 1

TYPE: KEY-DOWN
STEP = 1

TYPE: KEY-NXTREC
STEP =~ 1

TYPE: KEY-NXTSET
STEP = 1

TYPE: KEY-PRVREC
STEP = 1

TYPE: KEY-SCRDOWN
STEP = 1

TYPE: KEY-SCRUP
STEP = 1

TYPE: KEY-UP
STEP = 1

TYPE: PERSON_TRG
STEP = 1
STEP = 2
STEP = 3

TYPE: PRE-INSERT

Block 1 : PERSON

TYPE: KEY~CLRREC
STEP = 1

TYPE: KEY-ENTQRY
STEP = 1

TYPE: KEY-EXEQRY
STEP = 1
FIELD 1 : SSAN
FIELD LENGTH: 11
TYPE: KEY-PRVFLD

STEP =]

75

Appendix G. Data Dictionary Program

REM RRRARRRAARAARNARRRARRNRAAAARRARRARRAARRRARRRRRARRARAARARNARAARARRR
.REM This AFIT/SCV RPT application provides hardcopy documsntation
.REM for specific SQL*FORMS applications using the Oracle dictionary.

.REM updated 10/90 M=
<REM RENRRANRRARRRARRENARRRARRRRRRARRN AR RN AR ERARARRENRRRRERAREARRRR AR

.REM *#*#%* Declare IAPAPP table related variables #®&#%
.REM *#*%2% APPLICATION LEVEL INFORMATION VARIARLES

.DECLARE APPID 99999 .REM APPLICATION ID NUMBER

.DECLARE APPOWNER A30 .REM APPLICATION OWMNER’'S ORACLE USER NAME
.DECLARE APPNAME A30 .REM SHORT APPLICATION MAME

.DECLARE APPTITLE AS80 -REN TITLE USED FOR MAIN IAP MENU
.DECLARE TODAY A9 .REM DATE OF REPORT GENERATION

.REM #*a%2% Dgclare IAPBLK table related variables ***=x#%
.REM #*%%%% RBRILOCK LEVEL INFORMATION VARIARBLES

.DECLARE BLKNAME A30 -REM BILOCK MNAME

.DECLARE BLKDESC A60 .REM MENU LINE DESCRIPTION FOR THIS BLOCK
.DECLARE BLKSEQ 999 .REX SEQUENCE NUMBER OF BLOCK IN APPL
.DECLARE BLKUNQKEY A3 .REM Y = CHECK UNIQUENESS OF PRIMARY KEY
.DECIARE BLKXTNAME A6l .REM NAME OF BASE TABLE. NULL-CNTRL BICK
.DECLARE TDESCRIPT A60 .REN BASE TABLE DESCRIPTION

.DECLARE BLKNOREC 99 -REM NUMBER OF ROWS 70 DISPLAY

.DECLARE BLKNOBUFT 999 .REM NUMBER OF ROWS TO BUFTER

.DECLARE BLKBLIN 99 .REM BASE LINE

.DECLARE BLKLNRC 99 .REM NUMBER OF LINES PER LOGICAL RECORD

.REM #*2x%% Dgclare all IAPCOMMENT table related variables #*#*#*%
.REM Pzimary Key values need not be declared again.
.DECLARE CMTTEXT A80 -REM COMMENT LINE OF TEXT
.DECLARE BOILPLATE AS80 .REM BOILERPLATE MAME

.REM #2*22% Declare all IAPF1ID table related variables #**st%
.REM *%%s% PIELD LEVEL VARIABLES

.DECLARE FLDMAME A30 .REM FIERLD NAME

.DECLARE FLDSEQ 99 .REM SBEQUENCE NUMBER OF FIELD IN BLOCK

.DECLARE FLDTYPE A7 .REM FIELD DATATYPER

.DECLARE FLDLEN 999 .REM FIELD LENGTH *
.DECLARE FLDQLEN 999 .REM QUERY LENGTH

.DECLARE FLDBTAB A3 .REM Y = DATABASE FIELD

.DECLARE FLDKEY A3 .REM Y = FIELD PART OF PRIMARY "
.DECLARE FLDCKFLD A6l .REM FIELD MAME FROM WHICH TO COPY KEY

.DECLARE FLDDFLT AS0 .REM DEFAULT VALUE

.DECLARE FLDDISP A3 .REM Y = DISPLAYED FIELD

.DECLARE FLDPAGE 099 .REM [FLOPAGE] PAGE NUMBER

76

RIEM ShRRn
REM Shtas
.DECLARE
.DECLARE
.DECLARE

.REM Saxte
.REM SRRak
.DECLARE

.REM “aths
.REM tass

REM tRRRR
.REM *asts

FLDPROMPT A80 -REM FIELD PROMPT
FLDENTER A3 REM Y = ENTERARLE FIELD
FLDQUERY A3 REM Y = QUERYARBLE FIELD

FLDUPDATE A3 .REM ¥ = UPDATABLE FIELD

FLDUPDNUL A3 REM Y = UPDATEABIE IF MULL FIELD
FIDMAND A3 REM Y = MANDATORY FIELD

FLDFIXED A3 .REM ¥ = FIXED LENGTHE FIELD

FLDSKIP A3 .REM ¥ = SKIP TO MEXT FIELD WHEEN FULL
FILDHIDE A3 .REM ¥ = NO ECHO OF KEYED VALUES TO SCREEMN
FLDAUTOHIP A3 .REM Y = AUTO DISPILAY HELP OM FIELD ENTRY
FLDUPPER A3 .REM ¥ = CONVERT TO UFPER CASE
FIDLOVC A80 .REM MAME OF TEE LIST-OF-VALUES COLUMM
FLDLOW A30 .REM LOW VALUE

FLDHI A30 .REM HIGH VALUB

FIDHEL? A80 .REM FIEID HELP MESSAGE

FLDDESCRIPT A60 .REM FIELD DESCRIPTION

Declare IAPTRIGGER related variablaes **tas

TRIGGER VARIABLES

TRIGTYPE A30 .REM TYPE OF TRIGGER, MACRO
TRIGDESC A20 .REM TRIGGER DESCRIPTION FOR KEY DISPLAY
TRIGHIDE A3 .REM ¥ = DISPLAY TRIGGER IN KEY DISPLA

Declare IAPTRG (Trigger stop) related variables &ttt
TRIGGER VARIABLES

TRGSEQ 9999 .REM TRIGGER STEP NUMBER

TRGLABEL A30 .REM STATEMENT LAREL

TRGCURS Al .REM Y = MAINTAIN A SEPARATE CURSOR
TRGMVE Al .REM ¥ = ABORT TRIGGER IF STEP FAILS
TRGINV Al .REM Y = REVERSE RETURN CODE

TRGROLL Al .REM Y = RETURN FAILURE WHEN ABORTING TRIG
TRGSLAB A30 .REM SUCCESS LABEL

TRGFLAB A30 -REN FAILURE LABEL

TRGMSG A80 .REN MESSAGE DELIVERED OM FAILURE

Declare IAPSQLTXT related variables ##tas
SQL TEXT VARIABLES

SQTNO 999 .REM TRIGGER NUMBER ASSIGMNED FROM ALL LEVELS
SQTTEXT AS0 .REM TEXT FOR ALL TRIGGERS

Declare IAPMAP table related variables *#*#=%
MAP SCREEM VARIABLES
MAPPAGE 999 .REM BOILERPLATE PAGE WNASER

MAPLINE 999 .REM BOILERPLATE LIME NOMBER
DECLARE MAPTEXT AS0 .REM BOILERPLATE TEXT
DECLARE PAGRCHNT 999 .REM COUMTER FOR BOILERPLATE LOGIC
PAGECHT 0
.DECLARE LINECNT 999 .REM COUNTER FOR BOILERPLATE IO0GIC
.DECLARE MAPFLAG Al REM ‘Y’ TURNS ON BOILERPLATE DISPIAY

T

.S8ET MAPFLAG 'Y’

.REM ##%%% Other variable declaration ####x
.DECLARE BLOCKS A30 .REM MAME OF BLOCK TO DOCUMENT (OR ALL)

.REM ##®%4% TABLE DEFINITIOMS

.REM Main Table - Fom level
#0T1 S5 70 &

.REM Main Table - Block lLevel
#fpr 2 10 70 &

.REM Main Table - Block level
#pT 3 1275 &

.REM Main Table - Field lLevel
#DT 4 15 80 &
.REM Main Table - Field lLevel

40T 5 17 90 &

.REM Attributes Table, Form leavel
#DT 6 17 32 33 44 45 60 61 80 §

.REM Attributes Fom level
#DT 7 14 14 15 80 &

.REM Fail Message Fora level
#DT 8 1528 29 80 §

-REM Trigger Step Massage Table Block level
fpT 9 170 &

.REM Trigger Step Attributes Table Block Level
#DT 10 19 19 20 80 §

.REM Falil Message Block level
#DT 11 19 32 33 80 &

.REM Trigger Step Massage Field lLevel
DT 12 19 0 #

.REM Trigger Step Massage Field level
#or 13 21 0 §

.REM Trigger Step Attributes Table, Field level
#DT 14 21 21 22 80 §

.AEM Fail Message Field level
#DT 15 21 34 3580 &

78

.REM Screen Display Table
#DT 16 1 80 &
#DT 17 17 32 33 80 #

.REM *##s+ SELRCT STATEMENT DEFINITIONS

.REM #*t*s: Define the APPLICATION level zeport select macro
.DEFIRE APPSEL
SELECT APPID,
APPTITLE,
TO_CHAR (SYSDATE)
INTO APPID,
APPTITLE,
TODAY
FROM SYSTEM. IAPAPP
UPPER (APPONNER) =UPPER (CAPPOWNER)
AND UPPER (APPXAME)=UPPER (SAPPMAME)

.REM *r#*a% Defing SELECT macro for APPLICATION level comments
.DEFINE APPOMTSEL

SELECT CMTTEXT

INTO O TEXT

.REM shaa% Define the SELECT macro for BLOCK level comments
.DEFIME BLKCMTSEL
SELECT OMTTEXT
OMTTEXT

INTO

FROM SYSTEM.IAPCOMMENT
WHERE OMTAPPID = £LAPPID
AND OCMTALYF = SBLKMAME
AND
AMD
ORDER

.REM **4%% Dgfine the SELECT macro for FIRLD level boilerplates
.DEFINE FLDBOILSEL

CMTTEXT

BOILPLATE

SYSTEM. IAPCOMMENT

COMTAPPID = EAPPID

CMTRIK = EBLEKNAME

OIIT1ID = LFLDNANE

CQITTRGTYP IS NULL

CMTLINE = 1

.REM *#*%% SELECT macro for APPLICATION level TRIGGER comments
.DEFINE APPTRIGCMTSEL

SYSTEN. IAPCOMMENT
OMTAPPID = EAPPID
CNTBLK IS NULL
CMTTRGTYP = LTRIGTYPE
CMTTRGSEQ = 0
CMITLD IS NULL
ORDER BY CNTLINE

.REM #**4%% SELECT macro for BIOCK level TRIGGER comments
.DEFINE BLKTRIGCMTSEL

.REM **%d% GEIECT macro for FIRLD level TRIGGER comments
.DEFINE FLDTRIGCMTSEL

.REM *ata* Genaric SELECT macro for TRIGGER STEP commants
.DEFINE FTRGCOMTSEL

.REM #*%*2=x% Ggnaeric SELECT macro for TRIGGER STEP comments
.DEFINE BTRGCMTSEL

.REM #**&® Generic SELECT macro for TRIGGER STEP commeants
.DEFINE TRGCOMTSEL

AND NVL(CMTBIK,'’’) = GBLKNAMNE
AND NVL(CMIFTID,’’) = GFLDNAME
ARD OMTITRGTYP = LTRIGTYPE
AND ONTITRGSEQ = ETRGSEQ
ORDER BY CMTLIRE

.REM s##a% Define the SELECT macro for APPLICATION level trig
.DEFINE APPTRIGSEL
SELECT MVL(TRIGEIK,'’),
MVL(TRIGFLD,'’),
TRIGTYPE,
NVL (TRIGDESC, ' MONE') ,
DECODE (TRIGRIDE, 'Y’, 'YRS’,’'NMO’)
BILXMAME,
FLDRAME,
TRIGTYPE,

81

TRIGDESC,
TRIGHIDE
FROM SYSTEM.IAPTRIGGER
WHERE TRIGAPPID = EAPPID
AND TRIGBLK IS NULL
ORDER BY TRIGTYPE

.REM ***%% Define the SELECT macro for BLOCK level triggers
.DEFIME BLKTRIGSEL
SELECT NVL (TRIGFLID,’’),
TRIGTYPE,
MVL (TRIGDESC, 'NONE') ,
DERCODE (TRIGHIDE, 'Y’ ,'YES’, 'NO’)
INTO FLDRAME,
TRIGTYPE,
TRIGDESC,
TRIGHIDE
FROM SYSTEM.IAPTRIGGER
WHERE TRIGAPPID = GAPPID
AND TRIGBLK = SBLKNAME
AND TRIGFLD IS NULL
ORDER BY TRIGTYPE

.REM ***%% Daefine the SELECT macro for FIELD level triggers
.DEFINE FLDTRIGSEL
SELECT TRIGTYPE,
NVL (TRIGDESC, 'WONE') ,
DECODE (TRIGHIDE, 'Y’ ,'YES8', 'WO’)
INTO TRIGTYPE,
TRIGDESC,
TRIGHIDE
FROM SYSTEM.IAPTRIGGER
WHERE TRIGAPPID = EAPPID
ARD TRIGBILK = SBLKNAME
AMND TRIGFLID = EFLDNAME
ORDER BY TRIGTYPE

.REM s*24* Define the generic SELECT macro for trigger steps
.DEFINE STEPSEL

DECODE (TRGCURS,'Y’,'*®’,’’),
DECODE (TRGINV, 'Y/, /%’ ,’7),
DECODE (TRGMVE,'Y’,’'%®’,’'’),
DECODE (TRGROLL, ‘X’ , '/ ,'%/'),
TRGSLAB,

TRGTLAB,

TRGMSG

a
:

TRGINV,

TRGNVE,

TRGROLL,

TRGSLAB,

TRGFLAB,

TRGNSG

SYSTEM. IAPTRG
TRGAPPID = EAPPID
TRGTYPE = ETRIGTYPE
NVL(TRGELK, /' ’) =EBLKMAME
TRGFID I8 MULL
ORDER BY TRGSEQ

.REM **%4%* Define the FORM level report select macro ##*as#
.DEFIRE FSTEPSEL
SELECT TRGSEQ,
TRGLABEL,
TRGSQL,
DECODE (TRGCURS, 'YX’ ,'*’ ,’*),
DECODE (TRGINV, 'Y’ , /%! /1),
DECODE (TRGMVE, 'Y’ ,'®’,’’),
DECODE (TRGROLL, 'Y’ , '’ ,'%’),
TRGSLAB,

;
:

TRGSLAB,

SYSTEM. IAPTRG
TRGAPPID = EAPPID
TRGTYPE = LTRIGTYPE
TRGBLK IS8 MNULL
TRGFLD I8 NULL
BY TRGSEQ

.EM tesa® Define thae FIEILD level report trigger select macro
.DEFINE FLDSTEPSEL
SELECT TRGSEQ,
TRGLABRL,

TRGSQL,
DECODE (TRGCURS, 'Y’ ,'®’,’ '),
DECODE (TRGINV, 'Y’ , %/ /),
DECODE (TRGMVE, ‘X’ , %/ ,/7),
DECODE (TRGROLL, ‘X’ ,’’,'*'),
TRGSLAB,

TRGCURS,

TRGINV,

TRGMVE,

TRGROLL,

TRGSLAB,

TRGTLAB,

TRGMSG

SYSTEM. IAPTRG

TRGAPPID = SAPPID
TRGTYPE = LTRIGTYPE
NVL (TRGBLK, ’ ’) =6 BLKNAME
NVL(TRGFLD, ' ’) =&FLDNAME
ORDER BY TRGSEQ

.REM #*##** Define the generic SELECT macro for trigger text
.DEFINE TRGTXTSEL

SELECT SQTTEXT

INTO SQTTEXT

FROM SYSTEM.IAPSQLTXT

WHERE SQTAPPID = GAPPID

AND S8QTNO = §£SQTNO
ORDER BY SQTLINE

.REM a#***%* Define the BLOCK level report select macro (ALL BLOCKS)
.DEFIRE BLKSEL
SELECT BLKMAME,

NVL (BLXDESC, 'NONE') ,

BLKSEQ,

DECODE (BLKUNQKEY, 'Y’ , ‘YRS’ ,'NO’),

DECODE (BLKTRAME , WULL, ' CONTROL BLOCK',

DECODE (BLKTONNER, WULL, NULL, BLKTOWNER | | . ')
| | BLKTRAME) ,

BLKINRC,

NVL (BLXOBYSQL, 0)
INTO BLKNAME,

BLKDESC,

8$QTHO
SYSTEM. IAPBLK
BLKAPPID = GAPPID

ORDER BY BLKSEQ

.REM #*t2% Dafineg the BLOCK level report select macro (ONE BLOCK)
.DEFINE ONEBLKSEL
SELECT BLKNAME,

NVL (BLKDESC, 'NOME'),
BLKSEQ,
DECODE (BLKUNQKEY, 'Y’ , ‘YES', 'NO’),
DECODE (BLXTNAME , NULL, ' CONTROL BILOCK',
DECODE (BLKTOWNER, NULL, NULL, BLKTONNER| |’ .’)
| | BLKTNAME) ,

NVL (BLKOBYSQL, 0)
BLXNAME,
BLKDESC,

8QTNO

SYSTEM. IAPBLK

BLKAPPID = GAPPID

UPPER (BLKNAME) = UPPER (&BIOCKS)

.REM ®*%*®%%* Defing the FIELD level report sealect macro *a#awn
.DEFINE FLDSEL
SELECT FILDNAME,

FLDSEQ,

FLDTYPE,

FLDLEN,

FLDQLEN,

DECODE (FLDBTAB, 'Y’ ,'YES’,'M0’),

DECODE (FIDKEY, 'Y’ ,'YE8','W0’),

DECODE (FLDCKBLK, NULL, WOLL, FIDCKBIX| |’ .’) | | FLDCKFID,

85

FLDDFLY,
DECODE (FLDDISP, 'Y’ , YRS’ ,'NO’),
DECODE (FLDENTER, 'Y’ , ‘YRS’ , 'NO’),
DECODE (FLDQUERY, 'Y’ ,'YES’, 'NO’),
DECODE (FLDUPDATE, 'Y’ , ' YES’, ‘WO’),
DECODE (FLDUPDNUL, 'Y’ , 'YES’ , ‘MO’),
DECODE (FLDMAND, ‘'Y’ , ‘YRS’ , 'NO’),
DECODE (FLDFIXED, ‘Y’ ,'YES’, 'NO’),
DECODE (FLDSKIP, 'Y’ , ' YRS’ , 'N0’),
DECODE (FLDHIDE, 'Y’ , ‘YRS’ ,'WO’),
DECODE (FLDAUTOHLP, ‘'Y’ ,'YES','N0’),
DECODE (FLDUPPER, ‘Y’ , ‘YRS’ , MO’),
DECODE (FLDLOVT, NULL, NULL, FLDLOVT{ |/ ./) | | FLDIOVC,
FLDLOW,
FLDAHI,
FLDHELP,
FLDPAGR,
FLDLINE

INTO FLDNAME,
FLDSEQ,
FLDTYPE,
FLDLEN,
FLDQLEN,
FLDBTAB,
FIDKEY,
FLDCKFLD,
FLDDFLT,
FLDDISP,
FLDENTER,
FLDQUERY,
FLDUPDATE,
FLDUPDNUL,
FLDMAND,
PLDFIXED,
FLDSKIP,
F1DHIDE,
FLDAUTOHLP,
FLDUPPER,
FLDLOVC,
FLDLOW,
FLDHI,
FLDHELP,
FLDPAGE,
FLDLINE

FROM SYSTEM.IAPFLD

WHERE FLDAPPID = GAPPID

AND FLDBLK = SRLKNAME
ORDER BY FLDSEQ

.REM ##%2# SELECT macro for FIELD level dascrip #*#w#e
.DEFINE FLDDESCSEL

.REM #*22* SELECT macro for BLOCK level table descrip *####
.DEFIME BRLKTDESCSEL

SELECT TDESCRIPT

INTO TDESCRIPT

FROM TABLE DESC

WHERE TMAME = EBLKTHNAME

LI

.REM ®%*#** Dafine the SELECT macro for BoilerPlate trtwt
.DEFINE MAPSEL
SELECT MAPPAGE,
MAPLINE,
MAPTEXT
INTO MAPPAGE,
MAPLINE,
MAPTEXT
FROM SYSTEM. IAPMAP
WHERE MAPAPPID = EAPPID
ORDER RY MAPPAGE, MAPLIMNE

.REM #**#3% Define select macro to get logged on
.REM #*#*a%% uger name (appowner)
.DEFINE GETUSER

SELECT USER

INTO APPOWNER

FROM SYSTEM.IAPAPP

JREM #%#a%k START RPT

.REM ***2% Define the APPLICATION level rxeport body stas#
.REM #*#2% DRINT HEADER, DATE, TITLE,
.REM ®*#%** RUN FORM, BLOCK, FIELD LEVEL INFO
.DEFINE APPBODY
fr 1
48 2
ARRRARARRARARAREANARARANARARRANRRLRAERRARAARRANARAAACRARAER
48 1
DOCUMENTATION FOR SQL*FORMS APPLICATION:\ \
.PRINT APPIAME
48 1
ARRRRARRNARARNRR AR RAARARAAEARAARANNARAREERAARRAARRRRENS
48 1
#RR
REPORT GENERATION DATE:

.PRINT TODAY
#nc
TITLIE:
.PRINT APPTITLE
#nc
ONNER :
.PRINT APPOWNER
48 2
ARRRRRRRENRRRRARARRARRRRAARRRNRARRRRARARAASRRRAR SRR RAR
#CEN FORM LEVEL
m
BARRAARAAARRRRRANRRRRARRRAARRRARRAARRRARAERRRAANR AR NS
"m
.REPORT APPCMTSEL CMTBODY CMTHEAD
TR
.REPORT APPTRIGSEL APPTRIGBODY APPTRIGHEAD
#r 1
#8 2
AREAARENARNARAERRARRERREARARNANNAAANRNREAARRARRNARR AR
#CEN BLOCK LEVEL
o
ARRAARERRARRARRRRRRAARRRIRERARAARNRNRARARRARRERRARRARRR
e
.IF "gBLOCKS IS NULL" THEN ALLBLOCKS
.REPORT ONEBLKSEL BLKBODY
.GOTO ENDBLOCKS
. SALLBLOCKS
.REPORT BLKSEL BLKBODY
. GENDBLOCKS
.IF "GMAPFLAG != 'Y’" THEN END
#T 16
48 4
.REPORT MAPSEL MAPBODY
4T
. GEND

.REM *#%%* PRINT COMMENT HEADER
.DEFINE CMTHEAD
#s 1

.REM #¢%%% DPRINT COMMENT TEXT
.DEFINE CMTBODY
.PRINT CMTTEXY

.REM #*s** FORM LEVEL TRIGGER KEADER
.DEFINE APPTRIGHEAD
fir 2

.REM #*%%%* FORN LEVEL TRIGGER BODY
.DEFINE APPTRIGRODY
r 2
TYPE:
.PRINT TRIGTYPE
"m
DESCRIPTION:
.PRINT TRIGDESC
m
RIDE:
.PRINT TRIGHIDE
L
#TE
#8 1
.REPORT FSTEPSEL STEPBODY

.REM ®*##% FORM LEVEL TRIGGER INFORMATION
.DEFINE STEPBODY
#r 3
STEP =
.PRINT TRGSEQ .
"m
LABEL:
.PRINT TRGLABEL
#TE
T 4
81
.REPORT TRGTXTSEL TRGTXTBODY
.REPORT FTRGCMTSEL CMTBODY CMTHREAD
48 1
#TE
#r 7
.PRINT TRGMVE
fnc
ABORT TRIGGER STEP FAILS
nc
.PRINT TRGINV

.REM #*#*#4#% PRINT TRIGGER SQL STATEMENT
.DEFINE TRGTXTBODY

#RR
.PRINT SQTTEXT

.REM #®#*2% RLOCK LEVEL INFORMATION
.DEFINE BLKBODY
fit 2
48 2
B e
n
\ \ Block
.PRINT RLKSEQ

.PRINT BLENAME
"
e]
8 1
4T
fir 4
in

BLOCK DESCRIPTION:

WUMBER OF ROWS DISPLAYED:
.PRINT BLKNOREC
#nc
NUMBER OF ROWS T0 BUFFER:
.PRINT BLKNOBUT
#8C
.IP "GBLKNOREC = 1" LABEL1
NUMBER OF LINES/ROWS:
.PRINT BLKINRC
#nc
BASE LINE:
.PRINT BLKBLIN
.GLABEL1
1=
.IP "6SQTNO = 0" NO_ORDER_BY
T 4

_ RERRRRRARARNRARRR AR AR AR A RRAR SRR RRRE AR AR
L L]

\ \ \ \ \ rrEILDS

o

AARBRRRRREARRARARRRARARAAAARRARRRARAARAAANRER

48 1
#7E
.REPORT FLDSEL FLDRODY

9

.REM ###a% RLOCK LEVEL TRIGGER HEADER
-DEFINE BLKTRIGHEAD

T 4

#s 2

.REM *#*2*% BLOCK LEVEL TRIGGER BODY
.DEFINE BLXTRIGBODY
T 4
m
TYPE:
.PRINT TRIGTYPE
M
DESCRIPTION:
.PRINT TRIGDESC
o
HRIDE:
.PRINT TRIGHIDE
"o
.REPORT BLKTRIGCMTSEL CMTBODY CMTHEAD
#8 1
#TE
.REPORT STEPSEL BSTEPBODY

.REM #*s%%% RLOCK LEVEL TRIGGER INFORMATION
.DEFINE BSTEPBODY
#r 9
L
STEP =
.PRINT TRGSEQ
i
LABRL:
.PRINT TRGLABEL

i
#T 12
481
.REPORT TRGTXTSEL TRGTXTBODY
.REPORT BTRGCNTSEL CMTBODY CMTHEAD
481
#TE
#T 10
.PRINT TRGMVE
#nc
ABORT TRIGGER WHEN STEP FAILS
#nc
DPRINT TRGINV
#nc
REVERSE RETURN CODE
#nc
.PRINT TRGROLL
#nc
RETURN SUCCESS ON ABORT
#nC
.PRINT TRGCURS
#8C
SEPARATE CURSOR DATA AREA
#nc
#nc
#s 1
SUCCESS LABEL:
.PRINT TRGSLAB
#nc
#nc
FAILURE LABEL:
.PRINT TRGFLAB

|

93

.PRINT FLDNAME
m
4T
-
.REPORT FLDDESCSEL FLDDESCBODY FLDDESCHEAD
§TE
4T 4
ARANBARRRARRRRANRARRANRAARRNAREAEARARARAARAANR
=
#7 17
.EXECUTE FLDBOILSEL
"m
.IF "GFLDPAGE = 0" THEN PAGE_ZERO
BOILERPLATE:
#nc
.PRINT BOILPLATE
)]
. SPAGE_ZERO
DATATYPE:
#inc
.PRINT FIDTYPR
#NC
FIELD LENGTH:
e :
.PRINT FLDLEN
#nc
QUERY LENGTH:

.PRINT FLDOQLEN
#NC
PAGE:
#nc
.PRINT FLDPAGE

.&NO_FLD_CK
.IFNULL FLDOFLT WO_FLD_DFLT
DEFAULT VALUE:

e

.PRINT PLDDFLT
#nc

.&NO_FLD_DFLT

.IFNULL FLDLOW NO_RANGE

RANGE LOW:
#nc
.PRINT FLDLOW
#nc
HIGH:
#nc
.PRINT FLDHI
e
. GNO_RANGE
.IFNULL FLDLOVC NO_FLD_LOVC
LIST VAL TARLE:
#nec
.PRIN? FLDLOVC
.&M0_F1D_LOVC
#nc
.IFNULL FLDHELP NO_FLD HELP
#TR
4T S
HELP:
.PRINT FLDHELP
#TE
#T 17
.6NO_F1LD_EELP
#TE
#r s
.REPORT FLDCNTSEL CMTBODY CMTHEAD
#8 1

.PRINT FLDKEY
#nc
DISPLAYED:
#nc
.PRINT FLDDISP
fnc
.IFP GFLDDISP='NO’ THEN
QUERY ALLOWED:

95

.PRINT FYLDURPPER
#8C
. GEND
#TE
.REPORT FLDTRIGSEL FLDTRIGBODY FLDTRIGHEAD

..

.REM #*htns
.DEFINE FLDDESCHEAD
#RR
DESCRIPTION:
.FLDDRSCBODY

REM Reann
.PEFIME FLDDESCBODY
.PRINT FLDDESCRIPT

.REM #t#s% FIELD TRIGGER HEADER

.DEFINE FLDTRIGHEAD
#r 4
48 2
\ \ === TRIGGERS ~-~~~~=---~
#8 1
4T

.FLDTRIGBODY

.REM #%*%a% PIELD LEVEL TRIGGER BODY
.DEFINE FLDTRIGBODY
ir s
n
TYPE:
.PRINT TRIGTYPE
"m
DESCRIPTION:
.PRINT TRiGOESZ
N
HIDE:
.PRINT TRIGHIDE
Mm
.REPORT FLDTRIGCMTSEL CMTBODY CMTHEAD
#s5 1
#TE
.REPORT FLDSTEPSEL FLDSTEPBODY

.REM ##**% PIELD LEVEL TRIGGER INFORMATION
.DEFINE FLDSTEPBODY
#7 12
o
STEP =
.PRINT TRGSEQ
M
LARRL:
.PRINT TRGLABEL
#TE
#7 13
48 1
.REPORT TRGTXTSEL TRGTXTBODY
.REPORT TRGCMTSEL COMTBRODY CMTHEAD
#8 1
#TE
#r 14
.PRINT TRGMVE
#xnc

#mc
.PRINT TRGINV
nc

ABORT TRIGGER WHEN STEP FAILS

REVERSE RETURN CODE
#inc
.PRINT TRGROLL
#nc
RETURN SUCCESS ON ABORT
#nc
.PRINT TRGCURS
#nc
SEPARATE CURSOR DATA AREA
#nc:
#nc
48 1
SUCCESS LABEL:
.PRINT TRGSLAB
#nc
nc
FAILURE LABEL:
.PRINT TRGFLAB
#nc
4#TE
.IFNULL TRGMSG NO_FAIL MSG
#T 15
FAIL MESSAGE:
#NC
.PRINT TRGMSG
#TE
.&NO_FAIL MSG
#8 2

.REM *#*%#% DRAN THE SCREEN
.DEFINE MAPBODY
.IF "GPAGECNT=GMAPPAGR" THEN LABEL1
48 1
PAGE
.PRINT MAPPAGE
e
.BQUAL PAGECNT MAPPAGE
#s1
.S8ET LINECNT 1
. GLABEL1
.IF "GLINECNT=GMAPLINE" THE LABEL2
.IF "GLINECNT+1=LMAPLINE" THEN LABEL3
48 1
.SLABEL3
.ADD LINECNT LINECNT 1
.GOTO LABEL1
. GLABEL2
fc

.REM sa®t® Iogic to identify the application, start report #*a#s:
.GOTO GET_USER

.&RAD_APPID

.TELL "COULDN’T FIRD APPLICATION, TRY AGAIN OR CTRL-Y TO QUIT"
. &GRT_USER

.EXECUTE GETUSER

JASK "NAME OF THE SQL*FORMS APPLICATION: " APPMAME

.EXECUTE APPSEL

.IF "GAPPID IS8 NULL" THEN BAD APPID

.ASK "DISPLAY SCREEN MAP? (Y) " MAPFLAG

.SET BLKNAME " "

.SET FIDNAME " *

.PAGE 0 60

.REPORT APPSEL APPBODY

Appendix H. Data Collection Program

e b
-- FACILITY:

- Alir Yorce Institute of Technology, Wright-Patterson AFB OH
== ABSTRACT:

-- ¥FP2 provides software support msasuremsnt for Oracle

- database applications, by prompting the analyst for

- additions, changes, and deletions to the baseline.

-- It also provides sizing by analogy by scanning the bassline
- of SQL*rorms data dictionary reports identified by the

- analyst as similar to the software support requested.

== AUTHOR:

-- Capt Steven D. Radnov, AFIT/LSG GSS892D

== CREATION DATE:

-- Dec 92

== MODIFICATION HISTORY:

-- {tbs)

pragma page;

with Text IO;
with List Double Unbounded Managed; -- Booch Component

procedure FP2 is pragma Optimize (Time);
type Data_type is digits 3;

package Natural IO is new Text_ IO.Integer_ IO(natural);
package FloatPt_IO is new Text_IO.Float_IO(Data_type):

-- Actions necessary to support SER to enhance database applications
type SW_Support_type is =-- s/w support function point actions
(ADDED, -- new functionality
CHANGED, -- modification of existing functiomality
DELETED, -=- deletion of existing functionality

TOTAL) ; -=- total of all software support function points

type SW _Function type is -- Oracle database application
(TRANSACTIONS, ~- forms, reports

INPUTS, -- trigger steps, select statemsnts

100

ENTITIRS, -~ blocks, tables

OUTPUTS) -~ fields, priat statemants

-~ Unadjusted Function Points matrix

type UFP_type is

arzay (SW_Support_type, SN _Function type) of matural;
pzagasa page;
-- Technical Complexity Adjustmant scale

subtype TCA_Scale type is natural range 0..5;

- Technical Complexity Adjustment
-~ characteristics for array of scale values

type TCA_Characteristics is (
Data_Communication,
Distributed Function,
Pexrformance,
Heavily Used Configuration,
Transaction Rates,
Online Dats_Entry,
Design For End User_ Efficiency,
Online Update,
Complexity Processing,
Usable_In Other_ Applications,
Installation Ease,
Operations_Ease,
Multiple_Sites,
Facilitate_Change,
Requirements_Of_ Other_Applications,
Socu:i.ty_tzivacy Auditability,
User_Training Needs,
Direct_Use By Third Parties,
Documentation,
Client_Defined Characteristics):

== array of characteristic valuas

type TCA_type is array(TCA_Characteristics) of TCA_scale_type:

Pragas page;
== loop and string slice constants

SER Mum_length : constant positive := §;
Maxz Mame Length : constant positive := 40;
Max File Mame Length : constant positive := 65;
Max_Line lLength : constant positive := 80;

101

-- String subtypes

subtype SER Number type is string(l..SER Mum length):
subtype Name type is string(l..Max Mame Length):

subtype File Name type is string(l..Max File Mame Length);
subtype Line_ type is string(l..Max Line length);

FP2_Relp Filenamea : File Name type := (others=>’ ’);
Any Char : character;

== Input function points

type Step_Node_type is

recoxd
Name : Name_type := (others => ' ’);
Support : SW_Support_ Type := TOTAL;

and recozd;

package Step_List is new
List_Double Unbounded Managed(Step_Node_type):

-=- Output function points

type Field Node_type is
record
Nane : Name_type ;= (othezrs => ' ’);
Suppoxt : SW_Support_ Type := TOTAL;
Steps : Step_List.List := Step_List.Null List;
end record;
package PField lList is new
List_Double_Unbounded Managed (Field Mode type):

-=- Process function points

type Block Node_type is
recoxrd
Nanme : Name_type :m (others => ' ’);
Support : SW_Support Type 1= TOTAL;
Steps : Step_lList.List := Step List.Mull List;
Fields : Field List.List := Field List.Mull List;
end record;
package Block List is new
List_Double Unbounded Managed(Block Node_type):

-=- Transaction types
type App_Node_type is

record
Name : File Name_type := (others => ' ’);

102

orp : UFP_type := (otbers => (0, 0, 0, 0));

Support : SW_Support_ Type := TOTAL;

Steps : Step_List.List := Step_List.Mull List’

Blocks : Block List.List := Block _List.Mull List;
end recoxd;

package App_List is new
List_Double_Unbounded Managed (App Node_type):

== SER information

type Project_Node type is

recoxd
SER Mum : SER Wumber type := (others => ' ');
mu_m : Name_type := (others => ’ ');
Code_Wks : Data_type = 0.0;
Test_Wks : Data type = 0.0;
Code_Hrs : Dats_ ,_type = 0.0;
Test_Hrs : Data_type := 0.0;
UrPs : UFP_type := (others => (0, 0, 0, 0));
TCA : TCA_type := (others => 1);
Apps : App_list.List := App List.Mull List;

end recoxd;
package Project List is new
List_Double_Unbounded Managed (Project_MNode_type):
Project : Project List.lList;
Project_Option : character;

= b
-- Prompt user for project SER §

procedure Get_SER (SER Num: out SER Number type) is

Buffer : Line type:
String length : integer;

begin
SER Mum := (others => ‘' ’);
Text_IO0.Mew_Line;
Text_IO0.Put ("Eanter the Software Engineering Request number : “);
Text_I0.Get_Line (Buffer, String lLength);
if String length > SER Num Length

than
Text_I0.Mew_lLine;
Text__ IO M("m Mum truncated to -->" &

103

Buffer(l..SER Mum length) & "<");
SER Wum(l..SER Mum lLength) := Buffer(l..SER Wum length);
Text_IO.New Line;

else
SER Mum(l..String lLength) := Buffer(l..String length)’

end if;
end Get_SER;

== bt
- Prompt user for tha team ...

procedure Get_Team (Team ID: out Name_type) is

Text_I0.Put

("Enter each member of team alphabetically (using e-mail IDs), "):
Text_IO.New_Line;

Text_IO. Put("-.pa:at.d by non-alphabetic charzacters :");
Text_IO.New_Line;

Text_IO.Put (">"):

Text ,_10.Get_Line (Buffer, String length):;

then
Text_I0.New_Line;
!‘.xt JO. Put("!on ID truncated to -->" &
Buffer(l..Max Name length) & "<");

Team ID := Buffer(l..Max Name Length):;
Text_IO.New_Line;
else
Team ID(1..S8tring length) := Buffer(l..String length);
end if;
eand Get_Team;
Pragema page;

R e 2 ansesntnas AR SRR AR A AR RS AR RS AR AR SRR AR A A a s a s oy o
-- Clears screen with DEC VTlxx control codes and puts bordsr at top.

procedure Clear_Screen (With Lipe Of : in character) is

-

CL8 : comstant string := character’val(27) & "[27" &
characterz’val (27) & "[R";

begin

Text_IO.Put (CLS);

for i in 1 .. 72 loop

Text_IO.Put (With Line Of);

end loop:;

end Cleax_Screen;

== b
- Gets a character after prompting with string provided.

function Get_Option(Prompt : in string) return character is
Char : chazacter := ' ’;
begin
Text_ IO.New_lLine;
Text_I0.Put (Prompt);
Text_IO.Get (Char);
retuzn Char;
end Get_Option;

pPragma page;

procedure FP28(Project: in out Project_lList.List) is separate;
procedure FP2E(Project: in out Project_List.List) is separate;
procedure FP2A(Project: in out Project_List.List) is separate;
procedure FP2vV(Project: in out Project_List.lList) is separate;

procedure FP2H(FP2_EHelp Filenams : string := "£p2.hlp") is separate;

==
- Displays a header for main program

procedure Header is

begin
Text_IO0.Mew_Line;
Text IO.Put ("Software Support 8Sizing and Rstimating”):;
Text_10.New_Line;
Taxt IO0.Put ("with Mark II Function Points for Oracle Databases”);
Text_JO.Mew_Line;
end Header;

pragma page;

105

I s nnnsamAsasamaRAas s Eas s s s s 0 g o o e
- Gat options for sizing and estimating

procedure Get_Option(Project_Option: out character) is

Optioa : chazacter;

begin

Text_IO.Mew_Line;

Text_IO0.Put (" (8)ize, (E)stimste, (A)ctual, (Q)uit, (?) : ");
Text_IO.Get (Optiom):

Project_Option := Option;

exception
when Text IO.Data Error =>
Project_Option := ’'?’;

end Get_Option;

==
- Footer for main program
procedure Footer is
begin
Text_I0.New_line;
Text_IO.Put ("END FP2“);
Text I0.New_Line;
end Footer;

Pragaa page;

begin -- FP2

Clear_Screen (With Line Of=>'m’);
Text_IO.Put (" FP2 “);
FP2_Relp Filename

(Max_File Mame_Length-7+1..Max File MName Length) :="FP2.HLP";
Beader;
L:loop

Get_Option (Project_Option):

case Project_Optiom is

when 'S’ | ‘s’ => FP28(Project); -- Size

when 'R’ | ‘e’ => FP2E(Project); -- Rstimate

106

whan ‘A’ | ‘a’ => FP2A(Project): -- Actual

whan ‘Q’ | ‘q’ => FP2V(Project): -- Save
exit L;

whean others => FP2H(Fr2_Help Filenams):
end case;

CI“:_Sc:oin (With Line Of=)>'m=’);
Text_IO.Put (" FP2 ");

end loop L;
Footer;

exception
when Text_ IO.End Error => null;

end Fp2;

separate (FP2) procedure FP2A(Project: in out Project_list.List)
pragma Optimize (Time):

Project_Node : Project_Kode_type;
Finished : character := 'N’;

procedure FP2AG(Project: in out Project Node type) is separate;
procedure FP2AP (Project: in out Project_Node type) is separate;

pragma page;

begin -- FP2A

Clear_Screen(With Line Of=>'-’');
Text_IO.Put (" FP2A ");
Text IO.Skip_Line;

Get_SER (Project_Node.SER_Num)

Get_Team(Project_Node.Team ;

-,

Text_IO0.Mew_Line;

Text_IO0.New_Line;

Text_IXO0.Put ("For SERE" & Project_Node.SER Wum &
», Team:" & Project_Node.Team ID);

FP2AG (Project_Node) ;
Project_List.Construct

107

(The_Item => Project_Node, And The_List => Project):;
FP2AP (Project_Node) ;

end FP2A;

separate (FP2.FP2A)
procedure FP2AG (Project: in out Project_Node_type) is
pragas Optimize (Time);

Pragaa page’
== bbbt
-- Display header for main procedure FYP2AG
procedure Header is
begin
Text_I0.New_ Line;
Text_I0.New_lLine;
Text_I0.Put
("Forms, reports, and/or tables " &
“ADDED, CHANGED, or DELETED to support the SERE" &
Project.SER Num);

EE
1]
]

ED: created a completely new form, report, or table"):
.New_Line;

.
14

L.

i
]

4

("CHANGED: components within existing fomm, report, and/or table"):;
Line;

:
:

:

588a80

o
3

|

. .

y
g
g

-
2
v

, DEL blocks, fields, and/or steps IN a fom."):;

we

:
i
1]

¢
{

letely deleted existing fom, rzeport and/or tbl."):

.
’

1y
5

i
1]

’

"Enter data in this format: 000.0");

’

g
~1

:
]
]

11318
(E'

Get Actual Punction Points Supported

procedure Get_Actual is

Any Char : character;

108

begin -- Get_Actual

Get_Code Wks:
bogin
Text_IO. Put("cu..nda: weeks elapsed durxing coding > ");
noam_xo Get (Project .Code_Wks)
exception
whan Text_IO.Data_Error =>
Text_IO.Put ("Enter data in this foxmat: 000.0")’
Text_IO.Put (ASCII.BEL);
Text_. zo.m Line;
!ct I0. Put("cu.cnda: we-aks elapsed during coding>");
l'loam_l:o Get (Project .Code_Wks) ;
end Get_Code_Wks;

Get_Test_Wks:
begin
Text_IO.Put ("Calendar weeks elapsed during testing > "):
FloatPt_I0.Get (Project.Test_Wks):
exception
when Text_ JO.Data Error =>
Text_IO.Put ("Enter calendar weeks in this format: 000.0");
Text_IO.Put (ASCII.BEL);
Text_JO.Rew_Line;
Text_IO.Put ("Calendar weeks elapsed during testing > ");
FloatPt_IO.Get (Project.Tast_Wks):
end Get_Test_Wks’

Get_Code RArs:
begin
Text_IO.Put ("Man hours spent on coding > ");
FloatPt_IO.Get (Project.Code Hrs):
exception
when Text_ IO.Data Error =>
Text_IO. Put("htoz man hours in this forxmat: 000.0");
Text_IO.Put (ASCII.BEL);
l‘.xt I0.Mew_line;
Text_: - 10. Pnt("lhn hours spant on coding > ");
uonm_:o Get (Project.Code_Hrs):
end Get_Code_Hrs;

Get_Test_Hrs:
begin

Text_IO.Put ("Man hours spent on testing > ");

FloatPt_I0.Get (Project.Test Rrs):

exception
when Text_IO.Data_Error =>
Text_IO.New_Line;

.M("lne.: test man-hours in this format: 000.0"):;
Put (ASCII.REL)
Mew Line;

!‘tt p (o]
M IO.
M IO.
!c:t I10.Put ("Man hours spent on testing > ");

FloatPt_IO.Get (Project.Test_Hrs);
ond Get_Test_Hrs;

Get_Functions:
for Punctions in SW_Punction_type loop

Get_Support:
for Support in SW_Support_type loop

Block:
begin
Text_IO.Put
(SW_Function_type’ image (Functions) & "," &
SW_Support_type’ image (Support) &E">");
if Support = TOTAL then
Project .UFPs (TOTAL, Functions) :=
Project.UrPs (ADDED, Functions) +
Project.Urps (CHANGED, Functions) +
Project .Urps (DELETED, Functions) ;
Natural IO.Put (Project.UFPs(TOTAL, Functions)):
else
Natural_ IO.Get (Project.UFPs (Support, Functions)):
end if;

end Block;
end loop Get_Support:;
Text_IO.New_Line;
Text_IO.New_Line;
end loop Get_ Functions;
Any Char := Get_Option("Any char to continue > ");

end Get_Actual;

pragma page;

begin -- FP2AG
Beader;
Get_Actual;

end FP2AG;

separate (FP2.TP2A)
procedure FP2AP (Project: in out Project MNode_type) is
pragma Optimize (Time)’

110

Data_File : Text_IO.File_type:
Col : Text_IO.Positive Count := 1;
Pragma page;

begin -~ FP2AP

. Text_IO.Create(File=> Data File,

Mode=> Text_IO.Out_file,

Nama=)> "ger"” & Project.SER Num & ".dat");
Text_IO.Set_Output (File=> Data File):

Text_IO.Put (Project.Team ID);
Text_IO.Put (Project.SER Num):
FloatPt_IO.Put (Project.Code_Wks);
FloatPt_IO.Put (Project.Test_Wks):
FloatPt_IO.Put (Project.Code Hrs);
FloatPt_IO.Put (Project.Test_Hrs):

SW_Support:
for Support in SW_Support_type loop

SW_Functions:
for Functions in SW_Function_type loop
if not (Support = TOTAL)
than
Col := Text_IO.Positive Count(integer(Col) + 5);
Text_IO.Set_Col (To=> Col):;
Natural IO.Put (Project.UFPs(Support,Functions));
end if;
end loop SW_Functioas;

end loop SW_Support;

Text_IO.New_Line;

Text_I0.Close(Data File):

Text_IO.Set_Output (File=> Text_ IO.Standard Output);

Any Char := Get_Option("Any char to continue > ");

end FP2AP;
pragms page;
* separate (FP2) procedure FP2E(Project: in out Project_List.List) is
pragns Optimize (Time):;
* Project_Mode : Project_ Node_type:
Last_Char : natural := 0;
SER_Size : natural := 0;

procedure FP2ET(TCA : in out TCA type) is separate;

111

begin -~ FP2E

Clear_Screen(With .ine Of=>'-');
Text_IO0.Put (" FP2E ");

if Project_List.Is Null (Project)

then
Text_IO.Put(“No projects.”);
alse
case
Get_Option("Do you want to change default TCAs (Y/N) ? ") is
whan ‘Y’ | 'y’ => FP2ET(Project_Node.TCA):;
whan others => null;
end case;

Project_Node := Project_List.Head Of (Pxroject):
Text_IO.Put ("For SER" & Project_Node.SER Num &

*, and team: " & Project_Node.Team ID);
Text_IO.New_Line;

for i in reverse 1..SER Num length loop

if Project Node.SER Num(i) /= '
then
Last_Char := i;
exit;
end if;

end loop:;
for j in SW_runction_type loop

Text JIO.New Line;

r-xt_zo.me'('"m existing baseline has : ");
for i in reverse SW_Support type loop

Natural IO.Put (Project_ Node.UFPs(i,J)) ;
Text_IO0.Put(" -");

Text_IO.Put (SW_Support_type’image(i) & " ");

Text_IO.Put (SW_Function_type’image(J));

if i = TOTAL
then
Text_IO0.Put
(", and SERE" & Project_Node.SER Num & "requires ...");
elsif j /= TRANSACTIONS
than
SER 8ize := SER Sixze + (Project_MNode.UFPs(i,J));

112

end if;
Text_JO.New_Line;
end loop;
end loop;
Text_I0.New_lLine;
Text_IO.Put
("The size of SERE" & Project_Node.SER Wum & " is :" &
natural’image (SER Size) & " Mark II Functiom Points."):
Text_I0.Nevw_Line;
Text_I0.Put ("Estimated effort is < " §
*staff-hours, < " & "calendar-weeks.");
Text_I0.New_Line;
Any Char := Get_Option("Any character to coatinue ... "):
end if;

end FP2E;

Pragma page;
separate (FP2.FP2E) procedure FP2ET(TCA : in out TCA type) is

pragma Optimize (Time):;

Count : natural := 0;
Project_MNode : Project_node_type:

procedure Header is

begin
Text_ I0.Put
(" (valua) of Technical Complexity Adjustmant characteristics:"):;

Text_I0.New_Line:
end;

begin
Beader;
for i in TCA Characteristics loop
Count := Count + 1;
Text_IO.Put (natural’image(Count) & ": ("):

113

I0.Put (TCA_Scale_type’ image (Project_Mode.TCA(i)) & ") ");
O.Put (TCA_Characteristics’image(i)):;
O.New_Line;

separate (FP2)
procedure FP2H(FP2_Help Filename: string := "f£p2.hlp") is

Clear_Screen(With Line Of=>’'-’);
Text_IO.Put (" <ENTER>")

Text_IO.Open(Help File,Text_ I0.In File,YP2_Help_Filenams):;
Text_IO.Get_Line (Help File, Help Line, last Char);

Help:
while not Text_IO.End Of File loop

end ;
Text_I0.Close(Help File):
exception

when Text IO.Name Error =>
Text_IO.New _Line;
Text_IO.New_Line;
Text_IO.Put (FP2_Help Filename & " not found.");
Text_IO.New Line;
Any Char := Get_Option("Any character to continue ... ");

f
:
]

lny__ant := Get_Option("Any character to coantinue ... *);

separate (FP2) procedure FP28(Project: in out Project_List.List) is
pragma Optimize (Time):

114

Project_Node : Project_Node_type;

App_Node : App_Node_type;
Current App : App_list.List := App List.Mull List;
Apps : App_lList.List := App List.Wull List:;

proocedure FP2SG(App : in out App_List.List) is separate;
procedure FP28X(App : in out App List.List) is separate;

procedure FP2SR (App : in out App List.List) is separate;
Pragma page;

begin -- Fp2s
Clear_Screen (With Line Of=>’'-’);
Text_IO.Put (" FP28 ");
Text_I0.8kip Line;

Get_SER (Project_Node.SER Num) ;
Get_Team(Project_MNode.Team ID);

Text_IO.New_Line;
Text_IO0.New_Line;
Text_IO.Put ("For SERA" & Project_Node.SER Mum &
*, Team:" & Project Node.Team ID):;
FP28G (Project_Node.Apps) -- Get size of project

Project_List.Construct
(The_Item => Project_Node, And The_List => Project):

Current_App := Project_Node.Apps;
while not App_!.ht.!n_lull.(m:mt_lpp) loop
Extract: declare App_record : App Node type:
begin
App_xecorxd := App_ List.Head Of (Current App):
1f App_record.UFP (DELETED, TRANSACTIONS) = 0
th:zsx (Current_ App):
end if;
Current App := App_List.Tail Of (Current_App);
end Extract’

end loop;

115

Current_App := Project_MNode.Apps;
while not App_List.Is_Mull (Current_App) loop

FP2SR (Current App):
App_Node := App_ List.Head Of (Current App):

for i in SW_Support_type loop
for j in SW _Function_type loop

Project_Node.UFPs(i,j) :=
Project_Node.UFrPs(i, j) + App Node.UFP(i,J):

end loop;
end loop;
Current App := App List.Tail Of (Curreant App):
end loop;

Project_List.Set_Head
(Of_The_List=>Project, To_The Item=>Project_MNode);

end FP2S;

pragma page;
separate (FP2.¥P28) procedure FP2S8G(App : in out App List.List) is
pragma Optimize (Time);

=
-- Get Appe

procedure Get_App (Support : in SW_Support_type:
App : in out App_List.List) is

App_record : App_Node_type:

Buffer : Line type := (others => ’ ’);
8String Length : natural := 0;

All _Apps : boolean := false;

File_Name : File Name type := (othexrs => ' ’);

begin -- Get_App
Taxt_20.8kip Line:
pragma page;

Get_Apps:
loop

116

File Mame := (others => ' ’);

Muffer := (others => ' ’);

Text_I0.Mew_Line;

Text_IO0.Put (SW_Support_type’ image(Suppozrt) & ">");

All Apps := true;

Text_I0.Get_Line (Buffer,String lLength);
File Name := Buffer(l..65);

for i in 1..6S loop
if File Mame (i) /= ' '
then
All Apps := false;
exit;
end if;
end loop;

if A1l Apps

then
Text_IO.New_Line;

else
Text_IO.Put (File_Name)
App_record.Nama = File Name;
App_record.Steps := Step List.Wull List;
App_record.Blocks := Block List.Wull List;
App_recoxd.UFP (Support, Transactions) := 1;
App_record.UFP (TOTAL, Transactions) := 1;
App_List.Construct

(The_Item => App record, And The List => App);

end if;
exit Get_Apps when All Apps:
end loop Get_Apps;
end Get_App;

pragma page;

==+ttt
- Explain what to eater for each support type

procedure Explain(Support : in SW_Support_type) is

begin
case Support is

when ADDED =>

117

Text_JO.Put ("*NOTE* Apps to be ADDED will be sized " &
" analogy to existing Apps.”);

Text_IO0.New_Line;
Text_IO.Put

("Bnter the filenames of ' .FP2’ files of existing Apps "):
Text_IO.New_Line;
Text_IO.Put

("~similar- to the Apps that you will be developing for SER :");
Text_IO.Mew_Line;

when CRANGED =>
Text_IO.Mew_Line;
Text_I0.Put

("Enter the ’'.FP2’ files of existing Apps to be CHANGED :");
Text_IO.New_Line;

when DELETED =>
Text_IO.New_Line;
Text_IO.Put

("Entex the ' .FP2’ files of existing Apps to be DELETED : ");
Text_IO.New Line;

when others => null;
end case;

end Explain;

pragma page;
==+ttt
- Display header for main procedure FpP2SG

procedure HReader is

("IDENTIFY APPS TO BE ADDED, CHANGED, OR DELETED TO SUPPORT SER"):;
Text_IO0.Mew_line;
Text_I0.New_Line;
Text_IO.Put ("ADDED: means creating a completely new App."):

IO.
Text_IO0.Put (" ADD, CHG, or DEL some blocks, fields, or steps. ");

118

1
BE

: means completely deleting an existing App."):;

5's's's's
EE

entering App names, enter one per prompt. ");

MMM
o

g
]

68
H,

"To exit from the prompting, enter no file name.");

¥

REfiRiet

E IE I,
A1

1

one or more of the software support actions:"):;

[
3

end l.:dc::

|
§

begin -- FP28G

E

x;
-- Get App name and support actiom

Get_App_ Action:
loop

case Get_Option
("App to be (A)dded, (C)hanged, (D)eleted, (n)o more : ") is

when ‘A’ | ‘a’ =>
Explain (ADDED) ;
W_IPP(MJPP):
when ‘C’ | ‘¢’ =>
Explain (CHANGED) ;
Get_App (CHANGED, App) ;
when ‘D’ | ’‘d’ =>
Explain (DELETED) ;
Get_App (DELETED, App) ;
when others => exit Get_App Action;
end case;
end loop Get_App Action;
Text_JO.Mew_Line;

end FP2S8G;

separate (FP2.¥P28) procedure FP2SR(App : in out App_List.List) is

119

pragma Optimize (Time):
App_Node : App_Node type:

e
- Header for FP2 Size Requiremant
procedure Header(App Name : in File Name type) is
begin
Cleax_Screen(’'-’);
Text_IO.Put (" FP2SR ");
Text_IO.New_Line;
Text_IO.Put ("Size of the SER for App: " & App MName):;
Text_IO.New_Line;

end;

Pragaa page;

R e s n e o R A RN SRS AR AR R AR AR AR A RS AR S SR R RS asas s s sy
- Prompter for FP2 Size Requiremant

procedure FP_Changed (UFP : in out UFP_type) is

Remaining : natural := 0;

function Prompt_ With
(Question: string; Limit: natural) retuza natural is

Function_Points : natural := 0;

begin

Get_FP:
loop

Block:
begin

Text_IO.New_Line;
Text_IO0.Put (Quastion):
Matural_ IO.Get (Function_Points):

if Function_Points > Limit
then
Text_IO.Put (natural’image (Function Points) & " > &
natural’image (Limit) & " rsmaining,");
else
exit Get_FPp;
end if;

120

exception
when Text_ IO.Data_Rrror =>
Text_ IO.Put ("ENTER AN INTEGER");
end Block;
end loop Get FP;
return Function Points;

end Prompt With;
Pragma page;

begin -- FP_Changed

Support:
for Supported in ADDED .. DELETED loop

Functions:
for Functionality in INPUTS .. OUTPUTS loop

casa Supported is

when ADDED =>
Ramaining := natural’LAST;

when CHANGED =>
Remaining := natural (UFP(TOTAL, Functionality)):

when DELETED =>
Remaining := natural (UFP (TOTAL, Functionality)) -
natural (UFP (CHANGED, Functionality)):
end case;

case Functionality is

when INPUTS => UFP (Supported, Functionality) :=
Prompt With("How many trigger STEPS will be " &
SW_Support_type’ image (Supported) & ": ", Remaining):

when ENTITIES => UFP(Supported,Functionality) :=
Prompt With("How many BLOCKS will be " &
SW_Support_type’image (Suppozted) & ": ", Remaining);

when OUTPUTS => UFP (Supported,Functionality) :=
Prompt With("How many PIEIDS will be " &
SW_Support_type’image(Supported) & ": ", Remaining):
when others => null;

end case;

121

end loop Functionms;
Text_IO.New_Line;
end loop Support;
end FP_Changed;
Pragma page;

==
- Footer for FrrP2 Size Requirement

procedure Footer(App Name : in File Name type) is

bagin
Text_IO.New_Line;
Text_IO.Put("Sized Requirement for App: " & App_Name)’
Text_10.New_Line;

end;

begin
if not App_List.Is_Null (App)

then
App_Node := App_ List.Head Of (App):

if App_Node.UFP (CHANGED, TRANSACTIONS) > 0
then
Header (App_Node.Names) ;
FP_Changed (App_Node .UFP) ;
App_List.Set_Head(Of_The_ List=>App, To_The_ Item=>App MNode);
Footer (App_Node.Name) ;
elsif App_Node.UFP (ADDED, TRANSACTIONS) > 0
thean
for i in INPUTS .. OUTPUTS loop
App_Node.UTP (ADDED,1i) := App Node.UFP (TOTAL,i);
end loop;
App_List.Set_Head(0f_The_List=>App, To_The_Item=>App_ Node):
end if;

else
Text_IO.Put ("Bmpty App list");

end if;

end FP2SR;

with Pattern Match Regular_Expression; -- Booch Component

package GREP is nev Pattern Match Regular Expression

122

(Item
Index
Items
Any Item

=> character,
=> positive.
=> string,
-> ! ?I ’

Bscape Item => '\’,

Not_Item

Xy
= v

Closure_Item => ‘%',
Start_Class => '[’,

Stop_Class =>"')’,
Is_Equal => "=m");
pragma page;
with GREP;

separate (FP2.YP28) procedure FP28X (App: in out App_ List.List) is
pragma Optimize(Time):

type Part_type 1is

(NULL_PART,

BLOCK_PART,

FIELD PART,

-- ignore, continue scanning
-- block detected

-- field detected

TRIGGER NAME PART, -~ trigger name detected, wait for step num

STEP_NUMBER PART); -- step number, trigger step ID complete

type lavel_type is

(APP_LEVEL,

BLOCK_LEVEL,

FIELD LEVEL);

-- looking for trigger steps, than blocks

-= looking for trigger steps,
-= then blocks and/or fields

-=- looking for trigger steps,
-=- than blocks and/or fields

Level type := APP IEVEL;

Step_Node_type’

: Field Node_type:
Block Node_type:
App_MNode_type:

.
.
.
.
.
-

Text_I0.File_type:
Line_type’
natural;

123

The _Pattern : Line type;

End_Pattern : natural;
The_Data : Line_ type:
End Drta : natural := 0;
First_Char : natural := 0;
Last_Chax : natural := 0;

Line Number : natural := 0;
Column Number : natural := 0;

8top_Scroll : character := ' /;

pragma page;
Bk s a s n R e s s s e a e nsanas anasanaa

procedure Scan Line(The Pattern : Line_type:
Pattern length : natural;

The_Line : Line type’
End_Line : natural;
The_Data : out Line type:
End Data : out natural) is

Hit, Column : natural := 0;
begin
The_Data := (others => ' ’);

Hit :=GREP.Location_ Of
(The_Pattern(l..Pattern_length),The Line(l..End Line)):

if Rit > 0
then
for i in 1..End Line loop
if The Line(i) /= '

then
Column := Columm + 1;
The Data(Coluan) := The Line(i):

end if;

end loop:
End Data := Column;

ealse
End Data := 0;

end if;

124

exception

whean GREP.Pattern_Not_Pound =>
End Data := 0;

end Scan Line;

PIagaa page;
i o n m s m i m s a e s ma m s o a a0 o o e e o e
- Part_Of App

function Part_Of App(Current Line : in Line_type;
Current_line End : in natural)
return Part_type is

The_Data : Line type:
End Data : natural;
Part : Part_type := Null Part’

For_Step_length : natural := 7;
For_Step Number : Line type:

For_Trigger_ length : natural := §;
For_Trigger_ Name : Line_type:

For_Field lLength : natural := 18;
For Field Name : Line type;

For_Block lLength : natural := 18;
For_Block_ Name : Line_type;

Start_Here : natural;

pragma page;
begin

For_Step MNumber(l..For_Step_Length) := "STEP = “;
Scan_Line (For_Step_Number, For_Step_length,
Current_Line, Current lLine End, The Data, End Data);
if End Data > 0
then
Part := STEP_NUMBER PART;
for i in reverse l..Max Nams length loop
if Step_Node.Mame(i) = ' '
then Start_Here := i+2;
end if;
end loop;
Step_Node.Name (Start_Here..Max Name lLength) :=
The_Data(l..Max Name x‘nqth-ltu-t Reretl);
end if;

125

For_Trigger Name(l..Foxr_Trigger_length) := "TYPE: “;
Scan_Line (For_Trigger Mame, For_Trigger_ Length,
The Line, End Line, The Data, End Data):;
if End Data > 0
then
Part := TRIGGER MAME_ PART;
8tep_Noda.Name := The Data(l..Max Name length);
end if;
pPragma page;

For_Field Name(l..ror Field Length) := "PIEID [0123456789]";
Scan_line (For_Field Name, For_Field lLength,
The _Line, End Line, The Data, End Data);
if End Data > 0
then
Part := FIELD PART;
Field Node.Name := The Data(l..Max Name Length);
end if;

Por_Block_Name(l..For_ Block Length) := "Block [0123456789)";
Scan Line (For_Block_ Name,For Block_ Langth,
The_Line,End Lines, The_Data, End Data);
if End Data > 0
then
Part := BLOCK_PART;
Block Node.Name := The Data(l..Max Name Length);
end if;

return Part;

end Part_Of App:

pragma page;

begin -- FP28X
App_Node := App List.Head Of (App):

for i in 1..Max _File Name lLength loop
if App Node.Mame(i) /= ' '’
then
FPirst_Chsr := i;
axit;
end if;
end loop;

for i in reverse 1. .Max File_Name_lLength loop

if App Node.Mame(i) /= '
then

126

Last_Char := i;
exit;
end if;
end loop;

Text_IO.New_Line;
Text_I0.Put ("Opening " & App_Node.Name (First_Char..last_Char));
Text_IO.Put (", and reading”):
Text_I0.New_Line;
Text_I0.Open
(The_File, Text_IO.In File,
App_Node.Name (First_Char..last_Char)).

Thru File:
while not Text_JO.End Of_File(The File) loop

Text_IO.Get_Line(The File, The Line, End Line):;
Line Number := Line Number + 1;

if Line Number mod 100 = 0
then
Text_IO.Put ("Line #” & natursl’image(Line Number)):;
Text_IO.New_ Line;
end if;

pragma page;
case Part_Of App(The lLine, End Line) is

when BLOCK PART =>

Block_Node.Steps := Step_List.Null list;
Block_Node.Fields := Field List.Null List;

Block] . List. Construct (The_. It.»lloek Node ,

And The ult»lpp lodo Blocks):
App_m.M(mn,m:ruS) 1m
App_Node .UFP (TOTAL, ENTITIES) + 1;
Level := BLOCK LEVEL;

when FIELD PART =>
Field Node.Steps := Step List.Mull List;
Field List.Construct (The_Item=>Field Node ,
And_The] n-t»uock Node.Fields);
App_Node .UFP (TOTAL, OUTPUTS) :=
App_Node.UFP (TOTAL, OUTPUTS) + 1;
level := FIELD LEVEL;

when STEP_WUMBER PART >
case level is

when App_ILEVEL => -- add to App_STEPS

Step_List.Construct (The Item=>Step Node ,
And_The_List=> App_Node.Steps)’

127

App_Node .UFP (TOTAL, INPUTS) :=
App_Node.UFP (TOTAL, INPUTS) + 1’

when BLOCK LEVEL => -- add to BLOCK_STEPS
Step_List.Construct (The_Item=>Step_Nods ,
And The_List=> Block_Node.Steps):
App_Node .UFP (TOTAL, INPUTS) :=
App_Node .UFP (TOTAL, INPUTS) + 1;

when FIELD LEVEL => -- add to FIELD_STEPS
Step_List.Construct (The_Item=>Step MNode ,
And The List=> Field Node.Steps):
App_Node.UTP (TOTAL, INPUTS) :=
App_Node.UFP (TOTAL, INPUTS) + 1;

end case;
when TRIGGER NAME PART => null;
when NULL_PART => null;
end case;

pragma page;
if not Field List.Is_Null (Block_Node.Fields)

then
Field List.Set_Head (Of_The_List=>Block Node.Fields,
To_The Item=>Tield Node):
end if;

if not Rlock List.Is_Null (App Node.Blocks)
then
Block_List.Set_Head (0f_The List=>App Node.Blocks,
To_The_Item=>Block_Node);
end if;
end loop Thru File;
for j in SW_Function type loop
Natural_I0.Put (App_Node.UFP(TOTAL, j));
end loop;
-=-8top_Scroll := Get_Option("Any key ... ");

App_List.Set_Head (Of_The List => App,
To_The _Item => App_Wode);

.Close (The _File):
.New_Line;
Put ("c.l.ociog " & App_Node.Mame (First_Char..Last_Charx)):;

128

exception
when Text IO.Nams Error =>
Text_IO.New_Lins;
Text_XO0.Put (App Node.Name & "not found.");
Text_IO.New_Line;

end FP28X;

pragma page;

separate (FP2) procedure FP2V(Project : in out Project_List.List) is
pzagma Optimize(Time);

Project_Node : Project_Node_ type;

App_Node : App_Node_type;

Last_Char : natural := 0;

SQL Filename : File Name type := (others => ' ');
FP2V_Output : Taxt_I0.File_type;

FP2V_SQL File : Text_IO.File_type;

procedure Save Steps(Steps : in Step List.List) is
Step_Node : Step_Node_type;
begin
if not Step_List.Is_NRull (Steps)
then
Save _Steps(Step_ _List.Tail Of(Steps)):;
Text_JO.New_Line;
Step_Node := Step_list.Nead Of (The_List => Steps):
Text_IO.Put (Step_Node.Mame);
end if;
end Save_ Steps:

procedure Save Fields(Fields : in Field List.lList) is

Field Mode : Pield Node_type:
begin
if not Field List.Is_Null (Fields)
then

Save_Fields(Field List.Tail_Of (Fields));
Text_JO.New_Line;

129

Field Node := Field List.Head Of (The_lList => Fields):
Text_JO.Put (Field Node.Name);
if not Step_List.Is Null (Field Node.Steps)
then
Save_Steps (Field Node.Stcps):
end if;
end if;
end Save Fields;
Pragma page;
procedure Save_Blocks(Blocks : in Block List.List) is
Block_Node : Block Node_type:
begin
if not Block _List.Is_Null (Blocks)
than
App_Node.UTP (TOTAL, ENTITIES) :=
App_Node .UFP (TOTAL, ENTITIES) + 1;
Save_Blocks (Block_List.Tail Of(Blocks)):
Text_IO.New_Line;
Block Node := Block List.Head Of (The_List => Blocks);
Text_IO.Put (Block MNode.Name)
if not Step_List.Is Null (Block Node.Steps)
then Save_Steps (Block _Node.Steps):
end if;
if not Field List.Is_Null (Block_Node.rields)
then Save Fields(Block Node.Fields):
end if;
end if;
end Save_Blocks;

procedure Save Apps (Apps : in App_List.lList) is
begin
if not App_List.Is_Null (Apps)
then
App_Node.UrP (TOTAL, TRANSACTIONS) :=
App_Node.UFP (TOTAL, TRANSACTIONS) + 1.
Save_Apps (App_List.Tail Of (Apps)):
Text_IO0.New_Line;
App_Node := App_List.Head Of (The_List => Apps):
Text_I0.Put (App_Node.Name) ;
if not Step_List.Is_MNull (App_MNode.Steps)
then Save_Steps (App_Node.Steps):
end if;
if not Block_List.Is_Wull (App Node.Blocks)
then Save_Blocks (App Node.Blocks);
end if;
end if;
end Save_ Apps;

procedure 8QL (Project_record : in Project_Node_type) is

130

begin

Text_IO0.New_Line;

Text_XO0.Put ("INSERT INTO FP2_SER VALUES");
Text_XO0.New_Line;

Text_IO. Nt("("' & Project_record.SER WM & "',");
Text_IO.Put("’'" & Project_record. Team A ID(1..12) & "' ,");
Text_10.Mew_Line;

Text_IO.Put(“’'");
FloatPt_I0.Put (Project record.Code _Wks);
Text_IO.Put("’,");

Taxt_JO.Put("’'");
FloatPt_I0.Put (Project_record.Test Wks):
Text_IO.Put("’,");

Text_IO.Put("’'");
rloatn I0. M(P:ojoct recoxd.Code_Hrs):;
Text_IO. Put("' *):

Text_IO.Put("'");
FloatPt_10.Put (Project_record.Test_Hrs);
Text_IO0.Put("’,");

Text_IO.New_Line;

Matural_IO.Put (Project_record.UFPs (ADDED, TRANSACTIONS)):
Text_IO.Put(“,");

latutll I10.Put (Project_record.UrPs (CHANGED, WIGS)).
Text_IO.Put(”,");

lltu:a.l I0.Put (Project_record.UrPs (DELETED, TRANSACTIONS)) ;
Text_X0.Put(",");

Natural IO.Put (Project_recoxd.UFPs (ADDED,ENTITIES)):
Text_X0.Put(",”);

Natural_ IO.Put (Project_record.UFPs (CHANGED, ENTITIES)) ;
Text_XO.Put(",");

Natural_ I0.Put (Project_record.UFPs (DELETED, ENTITIES));
Text_I0.Put(",");

Matural_XO.Put (Project_record.UFPs (ADDED, OUTPUTS)) ;
Text_I0.Put(",*);

Matural_IO.Put (Project_record.UFPs (CHANGED, OUTPUTS)) ;
Text_JO.Put(*,");

Matural IO.Put(Project_record.USPs (DELETED, OUTRUTS)) :
Text_I0.Put(",");

Natural I0.Put (Project_record.UFPs (ADDED, INPUTS))
Text_I0.Put(",");

Natural_IO.Put (Pxroject_record.UFrPs (CEANGED, INPUTS)) ;
Text_I0.Put(",");

Natural_ IO.Put (Project_record.UFPs (DELETED, INPUTS)) ;
Text_XO0.Put("):");

131

Text_IO.Mew_Line;

end SQL;
pragas page;
begin

if project_List.Is_Mull(Project)

then
Text_I0.Put ("No projects to save.");

else
Project_Node := Project_list.Read Of (The List => Project):
for i in reverse 1..SER Mum lLength loop

if Project_Node.SKR Mum(i) /= ' ’
then
Last_Char := i;
exit;
end if;

end loop:;

Text_IO.Create(File => FP2V_Output,
Mame => "fp20ld." &
Project_Node.SER Wum(l..Last_Char))’
Text_I0.S8et_Output (File => FP2V_Output);

for i in 1..72 loop
Text_IO.Put ("=");
end loop:

Text_I0.Put ("SER #" & Project Mode.SER Wum & ", ");
Text_XO.Put ("Team: " & Project_Node.Team ID);
Text_10.New_Line;

for i in 1..72 loop
Text_IO0.Put("-");
end loop;

if not App_List.Is_Mull (Project_Node.Apps)
than
Save_Apps (Project_Node.Appe) ;
end if;

SQL Filename(l..3) := “ser";
for 1 in 1 .. SER Wum lLength loop
if Project_Node.SER Num(i) = ' '
then
Last_Char := i;

132

eaxit;
end if;
end loop:

SQL Filenama(l..7+Last_Char) := “sex" &
Project_Mode.SER Mum(l..Last_Char) & ".sql";

Text_IO.Create(File => FP2V_8SQL File,
Name => SQL Filenams):
Text_IO.Set_Output (File => FP2V_SQL File);
SQL (Project_MNode);
Text_IO.Set_Output (File => Text_I0.8tandaxd Output);
Text_IO.New_Line;
Text_I0.Put
("Mow, login to SQLPLUS and STARYT SER" & Project_MNode.SER Num);
end if;

end FP2V; -- in spite of salieri

133

10.
11.
12.
13.
14.

15.

16.

17.

Bibliography
Albrecht, Allan J. “Measuring Application Development Productivity,” in Proceedings Joint
SHAREIGUIDE/IBM Application Development Symposium 1979.
Albrecht, Allan J. and J. E. Gaffney, “Software Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation,” IEEE Transactions on Software Engineering
9: 639-648 (November 1983).
Bailor, Maj. Paul and Maj. J. Howatt, “Class Lecture in CSCES95 Sofiware Generation and
Maintenance.” School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, January 1992.

Behrens, Charles A., “Measuring the Productivity of Computer Systems Development Activities with
Function Points,” IEEE Transactions on Software Engineering 9. 648-649 (November 1983).

Blanken, Henk, “Implementing Version Support for Complex Objects,” Data and Knowledge
Engineering 6: 1-25 (January 1991).

Boehm, Barry W., Software Engineering Economics. Englewood Cliffs NJ: Prentice-Hall, 1981,

Booch, Grady, Software Componenis with Ada: Structures, Tools, and Subsystems. Mealo Park CA:
Benjamin/Cummings, 1986.

Brown, Darlene, “Productivity Measurement Using Function Points,” Software Engineering 13: 23—
32 (July 1990).

D’Angelo, Dr. Anthony, “Class Lecture in AMGT602 Federal Financial Management.” School of
?g;;ﬂns and Logistics, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, August
DeMarco, Thomas and T. Lister, “State of the Art Paper,” 1990.

Deming, W. Edwards, Out of the Crisis. Cambridge, MA: Massachuseits Institute of Technology, 1986.
Dreger, J. Brian, Function Point Analysis. Englewood Cliffs NJ: Prentice-Hall, 1989.

Esterling, Bob, “Software Manpower Costs: A Model,” Datamation 13: 164-170 (March 1980).
Gould, J. P. and C. E. Ferguson, Microeconomic Theory. Homewood IL: Irwin, 1980,

Henry, S. and D. Kafura, “Softiware Structure Metrics Based on Information Flow,” [EEE
Transactions on Software Engineering 7: 510-518 (May 1981).

Henry, Sallic and J. Lewis, “Integrating Metrics into a Lage-Scale Software Development
Environment,” The Journal of Systems and Software 13: 89-96 (October 1990).

Humphrey, Watts S. and N. D. Singpurwalla, “Predicting (Individual) Software Productivity,” JEEE
Transactions on Software Engineering 17: 196-207 (February 1991).

134

18.

19.

21.

23.

25.

27.

29.

31
32.

33.

3s.

3.

38.

Jones, Capers, Applied Software Measurement. New York: McGraw-Hill, 1991.

Low, Graham C. and D. R. Jefery, “Function Points in the Estimation and Evaluation of the Software
Process,” IEEE Transactions on Software Engineering 16: 64-71 (January 1990).

McCabe, Thomas J., “A Complexity Measure,” JEEE Transactions on Software Engineering 2: 308~
320 (April 1976).

Neter, John, W. Wasserman and M., H. Kutner, Applied Linear Regression Models. Homewood IL:
Irwin, 1989.

Oracle Corporation, Belmont CA, Pro*Ada User's Guide November 1986.

Pirsig, Robert M., Zen and the Art of Motorcycle Maintenance. New York NY: William Marrow and
Co., 1974.

Putnam, Lawrence H., Measures for Excellence. Englewood Cliffs NJ: Preatice-Hall, 1992.

Rakos, John J., Software Project Managemens for Small to Medium Sized Projects. Englewood Cliffs
NJ: Prentice-Hall, 1990.

Ratcliff, Bryan and A. L. Rollo, “*Adapting Function Point Analysis to Jackson System Development,”
Software Engineering Journal (January 1990).

Reynolds, Daniel, “Class Lecture in MATH696 General Linear Model.” School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, March 1992,

SAS Institute, Cary NC, SAS Procedures Guide 1988.

SAS Institute, Cary NC, SAS User’s Guide : Statistics Version 6 ed 1991.

Sayles, Jonathon S., How 1o Use Oracle SQL*Plus. Wellesley MA: QED Information Sciences, 1989,
Sommerville, Ian, Software Engineering. London, England: Addison-Wesley, 1989.

Symons, Charles R., “Function Point Analysis: Difficultics and Improvements,” [EEE Transactions
on Software Engineering 14: 2-11 (January 1988).

Symons, Charles R., Software Sizing and Estimating Mk II FPA. West Sussex, England: John Wiley
and Sons Lud, 1991.

Systems Support Division, “Thesis Topic,” 1990. Air Force Institute of Technology (AU), Wright-
Patterson AFB OH.

Systems Support Division, “Mission Statement,” 1991. Air Force Institute of Technology (AU),
Wright-Patterson AFB OH.

Tanenbaum, Andrew S., Structured Computer Organization. Englewood Cliffs NJ: Prentice-Hall, 1984.

vanGenuchten, Michiel, “Why is Software Late? An Empirical Study of Reasons For Delay in Software
Development,” [EEE Transactions on Software Engineering 17: 582-589 (June 1991).

Verner, June and G. Tate, “Estimating Size and Effort in Fourth-Generation Development,” /EEE
Software 5: 15-22 (July 1988).

135

Vita

Captain Steven D. Radnov was born on 20 December 1957 in Omaha, Nebraska. He graduated from
William Jennings Bryan High School in Omaha, Nebraska in 1976. He ealisted in the U.S. Air Force in
1978 as an Accounting and Finance technician and was stationed at Lackland Air Force Base, Texas from
January 1979 10 April 1983. He was accepted into the Airman’s Education and Commissioning Program
and earned a bachelor’s degree in Computer Science from the University of Nebraska at Omaha, and was
commissioned at Officer Training School in August of 1985. He was stationed at Offutt AFB, Nebraska
from September 1985 until April 1991. At Offutt AFB, he was a database analyst in the Intelligence
Support Directorate and was Chief of the Imagery Exploitation Section. He was selected to pursue a
master’s degree in Software Systems Management at the Air Force Institute of Technology.

Permanent Address: 5818 Orchard Ave. Omaha, NE 68117

136

Form Approved
OMB No 0704-0188

oo NN [yoLoelt

ALt ntIration sy estimates T 4 era R
eegeg ang . IMpeting anC re. en g he
w3gestory for reg nin 3

5ouggest ,
Tala e ot E et m gt La (500248307 angt the T

REPORT DOCUMENTATION PAGE

s ourgen

1T A

T nlut Der tespUtse ACILS
cnof (vdemation Ser
3'on Heaag.arters See. o
et Manjgement ang Bugger Paperac -

et me fne ey

restorate fo néemat

SN NSyt
mments rezatairs ths burden estima

<aguctior Pro 21 (2704-2788! Wwash.nguin

ons seAT Mg 119 sTuries
-Dect Ot thiy
5 setterson

on Operauces orN L
Y QPRoL VS

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 1992

3. REPORT TYPE AND DATE
Master’s

S COVERED
Thesis

3

4. TITéE AND SUBTITLE
)

E SUPPORT MEASUREMENT AND ESTIMATING
FOR ORACLE DATABASE APPLICATIONS USING MARK II

OFTWAR
FUNCTION POINTS

6. AUTHOR(S)

3

Steven D. Radnov, Captain, USAF

5. FUNDING NUMBERS

' 7. PERFORMINT ORGANIZATION NAME(S} AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GSS/LSY/92D-4

9 SPOUNSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Captain Auzenne
AFIT/SCV
WPAFB OH 45433

10. SPONSORING MONITORING
AGENCY REPORT NUMBER

11, SUFF.EVLNIARY NOTES

1za D:STRIBUT-ON AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

j 12b. DISTRIBUTION CODE
!

13 ABSTELTT (W3 mum 200 words)

}

This study investigated the results of measuring software support of Oracle database
applications and estimating the effort and schedule required to provide support. Software
measurement was accomplished with a variant of the function points metric, called Mark II
function points, which is comprised of three weighted parameters, inputs, entities, and out-
puts. A technique for mapping Mark II function points to Oracle DBMS components was
develooed, and the size of the software support for each project, per team, was measured by
tabulating and weighting the number of inputs, entities, and outputs that are added, changed,
and/or deleted. Software support effort was measured in work-hours and schedule in calen-
dar-weeks for given levels of function points. A data collection program was written to assist
with tabulating the measurements and x}:0 provided an option for sizing the support by
analogy. Observations were collected for 12 projects ranging up to 50 function points. The
relationship between software support measurement in Mark II function points and the
resulting effort or schedule was extensively analyzed for one and two person teams. A rela-
tionship determined by regression analysis was shown to be statistically significant for both

effort and schedule.

c—ee

. v——

—

14, SYBJECT TERMS

ftware, Software Development, Software Measurement, DBMS, Software
Maintenance, Function Points, Software Estimation, Databases, Database

15. NUMBER OF PAGES
150

16. PRICE CODE

4

Development

17, SECURTY CLASSIFICATION 18, SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPCRT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL

A . - - . W W28 o

NSN 7540-0°-280-5509

Standard Form 298 ‘Rev 2-89)
Pragiopeg b, ANS 373 390w
24w 152

AFIT Control Number AFIT/GSS/LSY/92D~4

AFIT RESEARCH ASSESSMENT

The purpose of this qucstionnkim is to determine the potential for current and furure applications
of AFIT thesis research. Please retumn completed questionnaires to; AFIT/LSC, Wright-
Panerson AFB OH 45433-9905.

1. Did this research contribute 10 a current research project?
a. Yes b. No ;

2. Do you believe this research topic is significant enough that it would have been researched (or
contracted) by your organization or another agency if AFTT had not researched it?

a. Yes b. No

-

- 3. The benefits of AFIT rescarch can ofien be expressed by the equivalent value that your agency
received by virtue of AFIT performing the research. Please estimate what this rescarch would
have cost in terms of .manpower and/or dollars if it had been accomplished under contract or if it
hzd been done in-house, '

Man Years Y

4. Ofien it is not possible 10 attach equivalent dollar values to research, although the results of
the research may, in fact, be important. Whether or not you were able 10 establish an equivalent
value for this research (3, above) what is your estimate of its significance?

2. Highly b. Significant ¢. Slighdy d. Of No
Significant - Significant Significance
5. Comments
Name and Grade Organization

Positon or Tiude Address

